

Lisa Zahray 2/3/2017
6.UAP Final Report Supervisor: Eran Egozy

Exploration of Music Composition in Virtual Reality

Abstract

Virtual reality (VR) is a new technology with many aspects that have yet to be fully
explored. This project continues previous work done over the summer to create and user-test
two music composition sandboxes for the HTC Vive virtual reality system. The sandboxes were
created using Unity and C#. The first sandbox is called the Grid Sequencer, in which the user
places cubes into different grids to create looping audio. The second is called the Bottle Shaper,
which focuses on the mechanic of reshaping bottle objects. The user can hit the bottles with a
drumstick or place them in the path of a fan to produce different sounds. 16 participants
playtested the sandboxes and completed a survey about their experience. The results show a
few major patterns. Users preferred using in-world objects to manipulate song parameters as
opposed to buttons on the controllers. Overall, users felt more immersed in the Grid Sequencer
world than the Bottle Shaper world. Reasons for this include inconsistent physics in the Bottle
Shaper, as well as a discrepancy between user expectations of an interaction versus what
actually occurs in that interaction. Users were also more satisfied with the sound of the music
they produced in the Grid Sequencer. This was largely due to a higher level of sound
automation in the Grid Sequencer, versus the Bottle Sequencer’s higher level of musical
freedom. Users reported high enjoyment ratings for both games and offered many pieces of
feedback, both specific to the sandboxes and regarding VR interactions in general. There are
many possibilities for future work. This includes adding features to the sandboxes based off
user feedback, and investigating entirely new music composition techniques in VR.

Background

While the idea of virtual reality has existed for many years, it wasn’t until fairly recently
that it became accessible to the public. Google Cardboard was one of the first widely popular
headsets, released in 2014. It visually immerses the user in a virtual world, but does not allow
the user to meaningfully interact with that world. The system’s other main limitation is that it
cannot detect head position. Spring 2016 saw the release of two high-end virtual reality
systems: The Oculus Rift and the HTC Vive. The Oculus Rift was first released as a seated VR
experience that allows the user to interact with their world through a standard XBox controller.
An external camera tracks head position. The HTC Vive was released a week later as a
full-room virtual reality experience. Two sensors mounted in the room allow for accurate motion
tracking in a larger space. Additionally, the Vive originally came with a pair of motion-tracked
controllers. The Oculus Rift recently released its own set of motion-tracked controllers.

Because this project focuses on music composition sandboxes, it is necessary to
understand existing virtual reality experiences involving artistic creation, musical experience,
and music composition. One example of an experience that focuses on artistic creation is Tilt

Brush [Google]. It is a creative sandbox where the user can paint in their 3-dimensional space.
A game that does not involve artistic creation, but that focuses on musical experience, is
Audioshield [Fitterer]. It is a rhythm game where the player uses shields to block incoming orbs
in time to the music. It can calculate a track for any song the user selects. Harmonix Music VR
combines artistic creation and musical experience [Harmonix]. It provides four different ways to
experience pre-existing music. Some of these four modes are more passive, while others
involve more interaction and creativity. A good example of a VR experience that focuses on
music composition is SoundStage [Hard Light Labs].

SoundStage is a music composition sandbox that, in some ways, is similar to the type of
experience this project focused on designing. It uses a modular approach to sound synthesis,
allowing the user to attach components together and modify the layout of their own personal
sound creation studio. Some of the main modules include a sequencer, a looper, a drum kit, and
an oscillator. The sequencer is a 2-dimensional grid. The rows correspond to different sounds,
and each column represents a different quantized moment in time. Notes play on squares that
have been selected. The looper lets the user record a series of piano key presses and then loop
them in the background. The drum kit is a live-performance tool, in which the user hits different
drumheads with a pair of drumsticks. The oscillator module produces waves of different
frequencies and shapes.

Project Goals

This project had two main goals. The first was to create two music composition sandboxes for
virtual reality, focusing on different types of interaction and composition tools. The second was
to playtest the sandboxes to investigate the effectiveness of these features in the context of
virtual reality.

The existing VR experiences previously described each have aspects that work well, but they
also seem to under-utilize some of the features VR enables. Google Tilt Brush provides a great
visual creative experience, but does not allow the user to express themselves musically.
AudioShield is a fun way to interact with music, but it under-utilizes the space. The user stands
in place and always faces one direction. Harmonix Music VR creates a fun musical experience,
but the user is limited in the ways they can be expressive and cannot create compositions.
Soundstage reproduces the feel of a sound synthesizer studio, with realistic-looking equipment
surrounding the user in all directions. However, this project aims to further explore how to take
advantage of virtual reality in ways that go beyond replicating real-world objects and
interactions. While SoundStage is a great tool to experience expensive real-life equipment in a
convenient setting, it is also interesting to examine how VR might be used to create experiences
and interactions that cannot exist in real life.

This project aims to explore VR interactions and musical composition techniques to become
more knowledgeable in maximally utilizing the opportunities VR provides.

Project Overview

Grid Sequencer

One of the two sandboxes created is called the Grid Sequencer. It consists of several
different grids in 3-dimensional space. Each row corresponds to a different note or sound, while
the columns represent quantized moments in time. A time bar moves across each grid in
synchronization with each other. The user can place cubes in the grid spaces to design an
audio loop. When the timebar passes over a cube in the grid, a musical event occurs. Different
rotations of the cubes correspond to different effects and parameters. The side of the cube
facing in towards the user is the active side. There are three different grids, each with their own
corresponding cubes. The cubes match the color of their matching grid’s timebar.

Percussion Grid

In the Percussion Grid, each row corresponds to a different percussion sound. Two of the faces
of the percussion cubes have dots representing a staccato, and when that face is active, the
note has a shorter duration.

Percussion Cubes:

Staccato side of percussion cubes

Melody Grid

In the Melody Grid, each row corresponds to a different note in the pentatonic scale. Two faces
of the melody cubes have arrows on them. An upwards-facing arrow shifts the pitch one octave
up, and a downwards-facing arrow shifts the pitch one octave down. This grid has two layers,
and is the only true 3-dimensional grid. It is therefore possible to play two instances of the same
note simultaneously, potentially in different octaves.

Melody Cubes:

Upwards arrow: pitch shift Downwards arrow: pitch shift

up by an octave down by an octave

Chord Grid

The final grid is the Chord Grid, which has two rows, each with a different function. The bottom
row determines what chord is played. The cubes that go in this row have a different chord
numeral on each face, and by default the chord is played as a whole note. The top row
determines the pattern of the chord. The cubes that go in this row have different patterns of dots
on their faces indicating their pattern. See below for some examples. A cube in this row only has
an effect if there is a cube directly below it to indicate the chord that should play.

Chord Cubes:

Major One Chord Major Four Chord Minor One Chord Minor Four Chord

 (chord cube faces change depending on major/minor mode)

Chord Style Cubes:

Right Cube Face Rotations:

Ascending eighth-eighth-quarter, Descending eighth eighth quarter,

 repeated twice (C major chord repeated twice (C major chord
 would be C-E-G, C-E-G) would be G-E-C, G-E-C)

Back Cube Face Rotations:

Full chord played as Top note of chord played Full chord played as Top two notes of
chord
half-quarter-quarter as whole note, bottom quarter-quarter-half played as quarter

 two notes played as notes, bottom note
 quarter notes played as whole note

Song Parameters

The Grid Sequencer also has options for changing two global song parameters: tempo and
quality (major or minor key). Tempo is controlled by scrolling on the left controller’s trackpad,
while quality is determined by an in-world lever the user can pull. When in minor mode, the sky
turns darker and it rains.

The below image shows the Melody Grid (left) and the Chord Grid (right)

The below image shows the Percussion Grid (right) and the quality lever (left)

Bottle Shaper

The second sandbox is called the Bottle Shaper. Its main mechanic is allowing the user
to reshape bottle objects, where different sizes and shapes correspond to different sounds. The
user can press the trackpad button on one of the controllers to create a new bottle. By holding
the trigger button, the user can push and pull on the bottle to change its shape and size. The
volume of the bottle determines its pitch, which also corresponds to its color. Larger bottles
have colors closer to red and produce a lower pitch, while smaller bottles have colors closer to
blue and produce a higher pitch. The shape of the bottle is also important. Certain aspects of

the shape are mapped to different audio effects, such as low-pass filters and distortion. The
user can move the bottles anywhere in space using the grip button. The bottles do not react to
gravity or other forces, so they stay exactly where they are placed. There are two methods to
make music with the bottles: hitting them with a drumstick, and placing them in the Fan Zone.

Drumsticks

Drumsticks can be picked up from a table in a corner of the play area by clicking the grip
button once. They will stay attached until the grip button is pressed again. When a drumstick
hits a bottle, it bounces off and a glass ping wav file of the correct pitch plays. The mallet of the
drumstick collides with bottles, but the handle goes through the bottles. The physics was
designed this way to prevent the drumstick from getting completely stuck inside a bottle, and to
make navigating an area with many bottles easier.

The image below shows several bottles about to be hit with drumsticks.

Fan Zone

One section of the of the play area contains a rotating fan surrounded by transparent
rings. These rings enclose an area called the Fan Zone. When the fan blows past a bottle inside
the Fan Zone, a blown-bottle sound of the correct pitch plays. The timing of the Fan Zone is
quantized, so bottles will only produce a blown-bottle sound on the beat. The user can change
the fan rotation speed by grabbing or pushing on the speed slider located below the fan.

The image below shows several bottles inside the fan region, which is enclosed in transparent
rings. The fan has a particle system that looks like blowing mist. The speed slider is located
below the fan.

Technical Details

General

HTC Vive

The project used the HTC Vive VR system for a full-room experience. The Vive consists of two
infrared camera sensors that track the position of a headset and two controllers, all shown in the
image below.

Unity

Unity is a 3D game engine that connects to the HTC Vive using the SteamVR Plugin. In
Unity, a project consists of different Game Objects with attached components. Components
include C# scripts and Audio Sources. Some predefined functions that Unity automatically
makes calls to include:

● Awake(), called when the script is loaded
● Start(), called after Awake()
● Update(), called every frame
● FixedUpdate(), called every fixed framerate frame (used for physics updates)
● OnAudioFilterRead(), called when Unity asks for Audio data

Both sandboxes use a Unity Asset called the Virtual Reality Toolkit (VRTK). This

provides scripts that enable grabbing, dropping, and throwing objects. For this project, some
minor edits to these scripts were made to customize events and reorder some function calls.

Sequencing System

Both sandboxes used the same sequencing system to play notes at the correct times.
This system consists of a Clock, a Scheduler, a Midi Synthesizer, and customized use of Unity’s
OnAudioFilterRead() function.

Clock

The Clock uses the Singleton design pattern. There exists one instance of the clock that
every script can access. The Clock stores the current tempo and the current quality
(major/minor). It has an event handler to notify other objects when it changes between major
and minor. The Clock also has a list of all the schedulers that exist in order to keep them in sync
with each other. The clock keeps time as the program runs, keeping track of the current time in
seconds and the current tick. Ticks are a measure of how much musical time has passed. There
are always 480 ticks per beat. The Clock has methods that convert from time to ticks and
vice-versa. To convert from time to ticks, the tempo must be converted to units of ticks/second,
and then a tick offset must be added to ensure tick continuity throughout tempo changes. This is
illustrated in the diagram below. In the diagram, the clock is running at a constant tempo (and
thus has constant slope) until it reaches changeTime, where the tempo (and therefore slope)
changes.

Scheduler

The Scheduler class allows objects to schedule a function to be called at a later instance
in musical time (a future tick). Each object that needs to schedule audio has its own Scheduler.
The Scheduler has a method PostAtTick() that takes in a function to be called in the future, the
tick when the function should be called, and an optional argument to pass into the function when
it is called in the future. The Scheduler stores all this information as one Command. The
Scheduler has a priority queue of Commands whose functions are waiting to be called, sorted
by tick. The method PopScheduledFunctions() returns any Commands whose functions need to
be called in some specified amount of time.

Midi Synthesizer

The Midi Synthesizer code provides the actual means for producing audio data. It allows
access to the Midi sound bank and Midi Messages such as NoteOn and NoteOff events. Most of
this is handled automatically by the CSharpSynth [Sanford]. The function FillWorkingBuffer()
must be called to retrieve audio data from the Midi Synthesizer. This code was edited to allow
any size buffer instead of a fixed size.

OnAudioFilterRead

Unity has the predefined method OnAudioFilterRead() that is called on a separate thread
when Unity asks an Audio Source for data. It can be overwritten to customize the audio that
plays, instead of just using Unity’s Play() and Pause() methods. An argument containing the
current audio data is automatically passed in whenever OnAudioFilterRead() is called. 3D sound
spatialization is applied to the data before this method is called, and audio effects are applied

after the method is called. To prevent overwriting the sound spatialization, every Audio Source
in the sandboxes constantly plays a wav file of all 1s, which multiplies the custom data.

 In OnAudioFilterRead(), any functions that need to be called within that audio buffer are
retrieved by calling scheduler.PopScheduledFunctions(). Then, it asks the Midi Synthesizer for
as much audio as it needs until a function needs to be called. It then calls the function, and
repeats this process until all the functions have been called. This allows functions like NoteOns
to be called at the exact correct tick. At the end of each OnAudioFilterRead(), the Clock is told
that one of its schedulers has moved forward in time. Because all OnAudioFilterRead()
functions are called at once, once all of the clock’s schedulers have announced that they’ve
moved forward in time, the entire Clock moves forward in time the same amount. This technique
for using the OnAudioFilterRead() function was inspired by materials and information provided
by Matt Boch.

Grid Sequencer Scripts

ParameterMappings

This script is attached to each cube, and contains parameter information specific to each cube
rotation. Each cube is initialized with a parameter setting (chord, chord style, staccato, or pitch
shift). This script stores the values for parameters like note duration, pitch shift, and chord
information for each possible rotation of the cube.

CubeFactory

The CubeFactory script enables cubes to regenerate when a cube is picked up from its starting
location. It is attached to a cube factory object. Each cube type has a corresponding cube
factory object that is the parent of all existing cubes of that type. CubeFactory keeps track of
which cube is the source cube (the cube that remains on the shelf). The method
sourceCubePickedUp() is subscribed to the InteractableObjectGrabbed event on the source
cube. This method instantiates a new cube to become the next source cube. Source cubes do
not react to forces and are more transparent than regular cubes.

CubeBehavior

This script handles the physical behavior of cubes. When the timebar crosses a cube,
CubePlayAnimation() is started. This is a coroutine that causes the cube to quickly grow and
then return to its normal size. This script also has the method CreateCubeCopy() that is called
when a cube is held close to a grid. It creates a preview cube object in the grid cell the cube
would snap to if released. The parameter setting for the cube is stored in this script. Finally,
CubeBehavior has a method ChangeCubeQuality() which is subscribed to the Clock’s
MajorChangeEvent. This changes the faces of the cube when the song quality is changed. This
is important for the chord cubes, because the numerals corresponding to the different chords
are different for major and minor keys.

GridBehavior

The GridBehavior script is attached to each grid. This script handles the physical aspects of the
grid, as well as its interactions with cubes. In Awake(), grid lines are drawn in 3D space using
the Unity asset Vectrosity. Each grid has a list of the CubeFactories it will accept. This prevents
percussion cubes from snapping to the Melody Grid, for example. Every FixedUpdate(),
GridBehavior loops through its list of acceptable cubes to check if it should lock any to the grid,
or if a preview cube should be created. If either of these need to occur, GridBehavior calculates
the closest grid cell to the cube and the nearest orientation it should snap to. The script keeps a
3-dimensional array, gridCellOccupation, containing the cube objects that are locked to each
grid cell.

GridSequencer

GridSequencer is instantiated by GridBehavior. It handles the audio sequencing for the grid
object it is attached to. It initializes a new Midi Synthesizer, and then calls StartSequencer().
This schedules the function _noteOn() or _chordNoteOn(), depending on the grid type, to be
called at the beginning of the next musical bar. This keeps all grids synchronized. _noteOn()
and _chordNoteOn() schedule themselves to play again a number of beats in the future specific
to the grid. They are therefore called every time the timebar moves to the next column in the
grid. _noteOn() checks whether there are currently any cubes in the current column, and if so
plays notes specific to the rows and parameter mappings of the cubes. _chordNoteOn() follows
a similar idea. However, some chord styles require notes to play at different times within the
same timebar. To accomplish this, _chordNoteOn() schedules the function _basicNoteOn() for
each note indicated by the chord style cube.

LeverScript

This script controls the lever’s rotation to ensure that it stays in bounds. When the lever is
released by the controller, this script sets the Clock’s major/minor boolean to the correct value.

Bottle Shaper Scripts

 ​CreateBottleOnClick

This script instantiates a new bottle object when the controller’s TouchpadPressed event is
called.

BottleHolder

This script is attached to the parent object of the bottles. It ensures that only one bottle interacts
with a controller at a time.

BottleBehavior

This script is attached to every bottle object. It procedurally creates the initial bottle mesh by
positioning all the vertices, and then connecting these vertices with triangles. The vertices are
arranged in rings going up the bottle. This script also handles bottle reshaping. It listens for the
controller to send an event that the trigger button has been pressed. It then checks if the
controller is within range of the bottle. If it is, it sets isInteracting to true and attaches to the ring
of the closest vertex. In Update(), if the bottle is interacting, it changes the positions of its
vertices according to the position of the controller. The bottle always remains symmetric with
respect to its central axis. Rings’ radii are affected on a linearly decreasing scale the farther they
are from the ring attached to the controller. This script sets the color of the bottles according to
volume, and sets audio effects according to shape. For example, the depth of the chorus filter is
based on how many times the bottle alternates between increasing and decreasing in radius.

BottleMusic

This script handles playing the glass ping wav file in the function OnCollisionEnter(). It sets the
speed of the wav file to produce the correct pitch.

BottleSequencer

Each bottle has a BottleSequencer. This lets the blown-bottle sounds originate from the bottle
location in 3D space. The Fan Zone is divided into sectors. In Update(), BottleSequencer
checks if the bottle is inside the Fan Zone. If so, it then checks if the bottle is in a new sector
that has not yet been scheduled. If this is the case, it schedules TryNoteOn() at the next tick
corresponding to that sector. TryNoteOn() checks if the bottle is still present in that sector, and if
so plays a Midi note of the correct pitch.

FanBehavior

This script rotates the fan at the correct speed during calls to FixedUpdate(). Start() initializes
the rotation to keep it aligned with the BottleSequencer instances.

TempoSlider

This script sets the Clock’s tempo to match the position of the speed slider every FixedUpdate().

User Testing Setup

To test the two music composition sandboxes, 16 participants playtested both and
completed a survey afterwards. Half the participants playtested the Grid Sequencer first, and
the other half playtested the Bottle Shaper first. The purpose of this was to control for any bias
that could result from the first sandbox being more novel than the second, or from the

participants being more tired later in the session. Before playing each sandbox, each participant
read a page of instructions detailing the controls and aspects of the sandbox. They played each
sandbox​ ​for 10 minutes, or less time if they felt finished before 10 minutes had passed. Finally,
everyone completed a survey about their experience. Throughout the playtest session, we took
notes on comments the participants made while playing, and any interesting behaviors and
trends we observed.

Results

See the Appendix for the full survey and results summary, including comments.

Discussion of Results

Importance of Physicality

The survey asked the participants if they had a preference between the using the
in-world lever to make global song changes (major/minor) versus using the controller for global
song changes (tempo control). The graph below shows the results.

68.8% of participants preferred using the physical lever, while no participants preferred

using a button on the controller. This shows that in virtual reality, making interactions feel
physical is important. Even though the controller button provided more convenience than a lever
that require the user to be in a certain location, the enjoyment of using an in-world object
outweighed the inconvenience. One participant commented that they did not know they could

change the speed with the controller, despite indicator text displayed on the controller during
runtime. This suggests that in-world objects are more noticeable and tempting to interact with
than controller buttons. This is further supported by one user’s question while playing the Grid
Sequencer. The user wanted to know if there was a way to delete cubes, but phrased their
question by asking if there was a garbage can. It seems that because virtual reality simulates
the real world, using in-world objects feels like the most natural way to accomplish tasks.

Immersion Ratings

The survey asked the participants to rate how immersed they felt in the Grid Sequencer
world and the Bottle Shaper world on a scale from 1 to 5. 1 is not at all immersed, and 5 is
completely immersed. Below is a graph showing each participant’s ratings, and a graph
comparing the average ratings of the two sandboxes.

A 1-tailed, paired t-test shows that the participants felt significantly more immersed in the
Grid Sequencer world than the Bottle Shaper world. The p-value is 0.0145, which is less than
the threshold of 0.05. The survey asked for optional comments after this question, which
provides some insight into this result. Six commenters cited inconsistencies or unexpected
behavior with the bottle and drumstick physics as factors that lowered their feeling of immersion
in the Bottle Shaper world. Some commenters found it strange that the drumsticks were affected
by gravity but the bottles weren’t. Several comments talked about the drumsticks going partially
through bottles and getting stuck, and one participant found it odd that bottles could go through
each other. One participant was disappointed they couldn’t break the bottles, and that this
seemed unrealistic. While playing, two participants attempted to place their first bottle on the
drumstick table, as would be natural to do in real life, before realizing that the bottles could float.

All of this suggests a few interesting ideas. First, because virtual reality feels real,
anything that seems would be possible in the real world is expected to be possible in the virtual
world. If something that seems possible (like breaking bottles) is not permitted, that breaks
immersion for the user. This is further supported by the way users interacted with the Fan Zone.
When placing a bottle in the path of the fan, several participants tried to rotate the bottle to see if
it produced a different sound. One participant mentioned they expected volume to change
depending on the bottle’s distance from the fan. These are all features that would naturally exist
in real life, so the participants expected them in the virtual world. When their expectations were
not met, they felt less immersed. The next main idea is that consistency is important. Many
participants seemed fine with the idea of bottles being able to float, but when mixed with
drumsticks that cannot float, something seems wrong. Finally, any glitches in physics are a big
deal in virtual reality. Many participants were confused when their drumstick became stuck in a
bottle, or when their drumstick started moving in unexpected ways. In fact, when asked for their
response to any unexpected, nonphysical events, 11 participants checked off the choice
“Sometimes it made me feel less immersed in the world.”

There were two participants who reported feeling more immersed in the Bottle Shaper
world than the Grid Sequencer. One of these participants said this was because the task of
actively reshaping bottles pulled them in more than just moving around cubes. Overall, the most
popular choice for the participants’ favorite activity in the Bottle Shaper was making different
bottle shapes, at 37.5%. This suggests that more complex tasks that allow for more creativity
add to an immersive experience, but not at the cost of losing consistent physics.

Satisfaction with Sound of Music

The survey asked participants to rate their level of satisfaction with the music they
created in each sandbox. Their responses can be seen in the graph below, as well as the mean
response for each sandbox.

A 1-tailed, paired t-test shows that the participants were significantly more satisfied with

the sound of the music they created in the Grid Sequencer than the Bottle Shaper, with a
p-value of 0.0032. The data did not show a correlation between music experience level and the
difference in music satisfaction rating between the sandboxes, with r = 0.205. However, there
weren’t enough participants in each category of musical background for a conclusive correlation
test. A common reason participants provided for being less satisfied with the Bottle Shaper is
that it was difficult to produce bad-sounding music in the Grid Sequencer, whereas it was easy
to produce simultaneous dissonant pitches in the Bottle Shaper. One participant commented
that they were more interested in individual sounds in the Bottle Shaper. However, in that
sandbox participants seemed to have trouble creating a cohesive song. One user mentioned
that they did not have enough time to make many different notes in the Bottle Shaper. Another
said that they tried to separate bottles from each other, but the fan still played them at the same
time. This is due to the way fan sequencing is quantized. It is possible that making the fan
sequencing more intuitive and giving the users more time to interact and explore could result in
increased musical satisfaction.

These results show that there is a balance between giving the user creative freedom and
automating sounds to ensure good-sounding music. The Grid Sequencer automated the music
enough so that dissonance was difficult to achieve. However, when asked, 8 users stated that
they would have preferred more control in the Grid Sequencer. In the Bottle Shaper, 9 users
would have preferred more control and 3 would have preferred less control. From the comments
about the Bottle Shaper, it seems that some users would have liked less control in the pitches
that were possible, but more control in the timing of the Fan Zone.

Button Choice

The survey asked participants to select their preference regarding button choice in the
Bottle Shaper. The purpose of this was to investigate how intuitive people find using the grip
button to grab objects. A graph of the results is below.

While 75% of users preferred the controls as they were or had no preference, those who would
have preferred the controls reversed had strong preferences. Two participants stated that the
grip button felt unintuitive to them, and this was their main reason for feeling less immersion or
less satisfaction with the music creation process in the Bottle Shaper. This shows that the
choice of controls can have a large impact on some users’ feeling of immersion and enjoyment.
In virtual reality games and sandboxes, it may be important to either playtest several different
button setups to find the most optimal one, or give users the option to customize their own
button setup.

Overall Enjoyment Ratings

Overall, participants preferred the Grid Sequencer slightly more than the Bottle Shaper,
with a 0.5 difference between their average enjoyment ratings. This makes sense, given that in
the Grid Sequencer world, participants felt more immersed and were more satisfied with the
sound of the music they created.

Suggestions for the Future

The feedback from the playtest sessions inspired some ideas on how to improve the
sandboxes, and some thoughts about other interactions and experiences that might be
interesting to explore in virtual reality.

Grid Sequencer

A few modifications and additions could be made to the Grid Sequencer. Tempo control
could be changed to a physical slider, and volume control dials could be added to each grid, as
one comment suggested. Since participants generally desired more control in the Grid
Sequencer, the user could be allowed to customize the instrument sounds for each grid.
Another possibility is to let the user compose multiple, separate loops on the same grid. The
user could manually switch the loop that is playing, or choose to automatically switch between
loops. This would prevent the music from getting too repetitive. This feature could be executed
by using the third dimension of the grid, with only the front layer containing actively-playing
cubes.

Bottle Shaper

The survey results inspired several changes and additional features for the Bottle
Shaper. First, the drumstick physics should be fixed to produce consistent behavior. If
drumsticks colliding with the bottles continues to cause issues, it is worth exploring the
approach SoundStage takes with drums. The drumsticks would physically pass through the
bottles, but the controller would buzz on the collision to give tactile feedback. Bottle creation
could become more physical by making a Bottle Creation Machine.

 The next series of large changes involve the Fan Zone. From comments and
observations, this sandbox would be more immersive if it were more reactive to the different
bottle positions and orientations in the Fan Zone. First, sequencing could be made unquantized,
or a switch could let the user switch between quantized and unquantized mode. This would
make the timing of the bottles more realistic. Volume of the blown-bottle sound could decrease
as distance from the fan increases, and the bottle’s rotation could be taken into account when
calculating a note’s envelope.

One small tweak is to widen the range of allowed pitches the bottles produce, since
some commenters were disappointed in the pitch limitations. Since users weren’t as satisfied
with the music they produced in the Bottle Shaper, the sandbox could be modified to only allow
pitches that sound good together, instead of being able to create every possible pitch.

Potential Future Explorations

There are many possibilities for different types of interactions in virtual reality that could
be used for music composition games. One idea is to better utilize the area outside of the
playzone. While the user can’t physically access this area while playing, it can still affect their

experience. For example, the user could slide an object down a long chute that extends past the
play area towards some large object in the distance. A musical and visual event could occur
when it reaches its destination. Something like this could give the user a better feeling that they
are in a large space. For similar reasons, teleportation would be interesting to explore. This
would permit direct interaction with areas normally outside of the playzone, giving the user
access to more space.

Conclusion

Virtual reality is a new technology that has yet to be fully explored. Several very different
VR experiences are available that focus on aspects of artistic creation, music experience, and
music composition. This project aimed to further investigate the features and elements that work
best for a virtual reality music composition sandbox. It continued previous work from the
summer to complete demo versions of two different sandboxes. It then focused on playtesting
both sandboxes and asked the participants questions to attempt to gauge what worked well,
what did not work well, and what was most important to the users. The results show several
patterns. First, the use of in-world objects whenever possible is important. Users enjoy
interacting with their world more than their controller. Next, some of the most important factors
for immersion are consistency in physics and object interactions, and how closely the user is
able to affect their surroundings to meet their expectations of what would happen in real life.
Finally, in a music composition sandbox, it is important to find the right balance between user
control and automation in the system. The user should feel like they created something unique,
but the composition process should also not be too difficult or complicated. From the feedback
received, several specific changes and additions could be made to each sandbox to improve the
user experience. Overall, given the small fraction of time virtual reality has been available
compared to other video game mediums, there is much more to create and discover. It is
important that new interactions and ideas continue being explored and evaluated in order to
take full advantage of the benefits of virtual reality.

Appendix

Link to survey results:

https://drive.google.com/file/d/0B-IIR9f_pPDLbWVuRTZuVzQyczQ/view?usp=sharing

https://drive.google.com/file/d/0B-IIR9f_pPDLbWVuRTZuVzQyczQ/view?usp=sharing

Works Cited

Boch, Matt. “unity midi / synth / scheduler?” Message to Eran Egozy. 20 June 2016. Email.

Fitterer, Dylan. ​Audioshield. ​Dylan Fitterer, 5 April 2016. Steam.

Google. ​Tilt Brush.​ Google, 5 April 2016. Steam.

Hard Light Labs. ​SoundStage​. Hard Light Labs, 7 July 2016. Steam.

Harmonix Music Systems. ​Harmonix Music VR.​ Harmonix Music Systems, Oct 2016.

Playstation 4.

Sanford, Leslie. (2014) ​C# Synth Project​. [Computer program]. Available at

http://csharpsynthproject.codeplex.com/​ (Accessed 20 June 2016).

http://csharpsynthproject.codeplex.com/

