
1

Using Mobile Devices to Create A Shared

Music Experience

Danielle Penny, Course 6-3, MIT Class of 2017

Abstract—Tutti is a web app, used primarily

on mobile, that aims to allow a large crowd to

perform a pre-composed musical piece together.

Taking inspiration from the MIT Engineers

song and MIT style of collaboration, this app

assigns each person a varying role throughout

the piece which dictates which parts of the

music they perform through their phones audio

speakers. Users will use a simple interface and

interaction methods such as pushing to hold to

create unique motifs that they can hear change

throughout the piece. A graphics client displays

a visualization of all the clients interactions with

the piece, while a conductor client controls when

the piece starts and stops. The development of

this application explores the ideas of interactive

music, developing an interface to encourage

creativity and exploration of the music, and how

to develop a system architecture that best serves

the musical architecture of the piece.

Keywords—Interactive Music, Mobile Apps.

I. INTRODUCTION

What if we could use our phones to cre-

ate a shared musical experience? The goal

of this project is to create a web applica-

tion where people can connect and create

a real time shared musical performance by

each person’s phone becoming an ’instru-

ment’ that plays a role in a piece of music.

Evan Ziporyn from the Music Department

composed a piece ’Engineered Engineers’

that was the foundation for creating parts

and an interface to best represent players’

roles in this piece. The app, named Tutti, is

planned to be used at the MIT Campaign

for a Better World Events, starting in LA

on February 7, where crows of 50-200

people will each use their phones to play

some of the notes from the piece, similar

to how instruments of an orchestra have

different parts that play together to create

the piece. The piece is based on the MIT

Engineers song, and has a few rhythmic

motifs that served as the backbone from

which the client structure was designed.

2

A. Previous Work

As technology and smartphones become

increasingly prevalent in day to day life,

we see a rise in use of these in interactive

music. Interactive music has been used

in a variety of contexts, from therapy to

educational technology to performances,

and in particular, as a means for enabling

audience interaction.

Some research, such as Choi et all,

focuses on the smartphones abilities

to detect different movements vs the

actual way it produces music. Their

paper explores the phones built-in tri-axis

accelerometer and its ability to detect

shaking and movement-based gestures.

Fabiani, Bresin, and Dubus created

MoodifierLive, a smartphone application

that is used in music performance, but

uses rule based automatic musical sounds.

It attempts to study how a system can

input gestures, and use those to interpret

emotions, and match the outputted music

to reflect those emotions.

The Stanford Mobile Phone Orchestra

studied social music interaction and in

particular, how to best enable audience

participation. They note the importance

of having the audience feel like they have

a purpose, and how the social aspect of a

performance can encourage participation,

especially in large audiences. Performed

in 2010, their interface primarily used

HTML and AJAX, and lacked the

sophisticated music libraries that exist

today (ie WebAudio, MIDI.js, etc).

In a chamber music and audience piece

Glimmer, Jason Freeman highlights the

challenges of empowering audience mem-

bers, noting, But could the work ever

make all 600 audience members feel

truly indispensable to its performance?

Large-audience participatory works cannot

promise instant gratification: giving each

person a critical role; requiring no degree

of experience, skill, or talent; and creating

a unified result which satisfies everyone.

This project seeks to create a web applica-

tion that gives audience members a sense

of ownership over the music, as well as a

closeness to MIT.

II. CRITICAL DESIGN FEATURES

A. Fault-tolerance

From a technical standpoint, one of the

most important features is that the server

is fail-proof. The server must be fault

3

tolerant, and able to handle varying loads

up to around 200 people. To minimize lag,

we minimize the work the server has to do

by putting most of the work on the clients.

One of the main technical challenges was

designing a system that is complex enough

to allow for multiple client roles and role

switching, while also minimizing the work

done by the server.

B. Usability and Interface Compatibility

with the Music

From a design and experience

perspective, the audience must enjoy the

musical experience, and feel ownership

over which parts of music they create.

The interface was designed to be simple

enough so that people can easily learn the

controls, and easy for audience members

to manipulate the sounds they produce

without requiring a music background.

The degrees of freedom given to each

person was tested thoroughly to allow

for the optimization of ownership and

quality of the performed piece. We want

to give people a sense of ownership where

they feel they can control the sound they

create, while also making sure that the

piece sounds good as a whole.

In one of the initial prototypes, we gave

audience members total control over what

notes they play, by supplying them with

a range of MIDI notes and instruments.

While this was a fun experience if it were

just one person hearing their music, it

became clear that a roomful of people

making unrelated melodies would not

sound like they were part of the same

performance, instead sounding disjointed

and cacophonous.

On the other end, another prototype let

each person play an exact part from the

composed piece, and no matter what they

pressed, the output sounded exactly like

their part. This guaranteed the summed

output sound exactly like the composed

piece, but did not give people the feeling

that their interaction with the piece mat-

tered. The final evolution provided play-

ers with three buttons, each correspond-

ing to a pre-composed part (played as

a WAV file). Audience members could

toggle these parts on and off.

III. TECHNICAL STACK AND

ARCHITECTURE

The main components are an all-

knowing server, several clients (who

are only aware of their own music, and

4

Fig. 1. Block Diagram of Major Components.

connect via a website on their phone),

a conductor, and a ’mega client’. While

each client only has a small part of the

music to play, there is a mega client

that plays the parts of the piece that

do not sound good on phones (notes

below a certain frequency) on a high

quality set of speakers, provided at the

venue. A ’Graphic Client’ (a computer

and projector) provides a visualization

of the piece as a whole (still under

development). The phone interface

responds to user inputs with simple

graphic changes (ie the button changes

color), but the graphics client responds to

all user inputs with simple animations.

Completing the graphics client is beyond

the score of the current project, but will be

finished in time for the first performance.

The audio is generated using ToneJS,

which uses the Web Auido API, and is

primarily playing different WAV files that

each client receives upon connection. Each

role is represented by a different WAV

file. The web interface is created using

Semantic UI.

IV. INTERACTION BETWEEN

COMPONENTS

A. Server

The server keeps track of the piece

in terms of current time, distribution of

5

Fig. 2. The server keeps track of how many clients are assigned to each role. Depending on when in the piece the

system is, there will be different ratios of people assigned to each role. For example, at the beginning there are only

chords, so most people will be role 0. When the eighth note (faster) rhythmic patterns are introduced, some people

will be reassigned to role 1

parts among clients, when a client interacts

with the website, and clients assigned to

each part. The server runs on the Node.js

platform, and multi client logic is done

in socket.io. The app runs on an instance

of an Express server, which is continu-

ally listening for client connections using

Socket.io. Every time a client connects,

they are assigned an ID, and a role (which

tells them which parts of the piece they can

play). The conductor can issue a play com-

mand, which emits a ready to start signal.

Once the server receives this message, it

relays to all the clients that their audio can

begin playing. Before this point, clients

can be connected to the webpage and see

(and interact with) the interface, but do not

produce sound.

The megaclient, or the conductor, dictates

when the piece starts. The conductor en-

ters through his own webpage, and when

he presses start, all connected clients re-

ceive a message that the piece has be-

gun, and their phone can start creating

sounds. Once the conductor presses start

the global variable measure starts incre-

menting. Measures are the units of mea-

surements/time used in music, to dictate

the current position in a piece of music,

relative to the number of beats that have

passed. For example, if the pieces tempo is

60 beats per minute, has 4 beats per mea-

sure, and starts at 11:11:20, at 11:11:24, it

will be at measure 1, at 11:12:20 it will

be measure 15, etc.

6

Fig. 3. Information stored by the server when a client connects

Fig. 4. The megaclient conductor relays a ready to start message to the server, which relays a start message to the

clients with the current measure

B. Client Connection

Clients can connect before the piece

begins, or during the piece. A client con-

necting before the conductor presses start

is not allowed to make a sound until the

piece starts. However, if a client connects

in the middle of the piece (after the con-

ductor starts it), it receives information

with the current measure from the server,

and is therefore able to play exactly in

time. Regardless of when a client con-

nects, it is assigned a random role in the

piece that switches every 16 measures. Up-

7

dates are sent from the server to the client

every 16th note (roughly every 104 ms).

These updates inform all clients which

measure theyre currently on, and these are

synced across all clients.

C. Client-side logic

Client-Side Logic When the client

opens the webpage, all WAV files will be

loaded at once, even if they do not corre-

spond to the role the client was assigned.

Originally, clients were going to receive

batches of WAV files in updates from the

server each time the clients role changed.

While this would decrease the initial load

time, as clients would have to load less

WAV files on the initial page load, ulti-

mately this was not the optimal structure

for the system. This is because this would

greatly increase the time needed for the

clients to process the updates. Instead,

almost all WAV file-related logic will be

done on the client side, reducing load

on the server. All the server gives in its

updates is the current measure, if the piece

has started, the time the piece was started,

and the clients roles (as integers), which

correspond to array indices of which WAV

file players should be played on the client

side.

D. Client Interface

All clients will see a simple interface of

three different colored buttons that fill their

screens. Each will be push to hold, and

correspond to a different WAV file (their

assigned role will determine which WAV

files these are). The position of the button

also holds significance. For example, in

some roles it might be that the top button

corresponds to a part with the highest

pitches, and the bottom part has the WAV

file with the lowest pitches. Or, it might

be that the top button has the part with

the fastest rhythms (ie sixteenth notes),

and the bottom has the slowest rhythms

(ie eighth notes).

V. NEXT STEPS

This is an ongoing project that I plan on

continuing to pursue even after UAP ends.

Within the next few weeks there will be a

load test to see see how the system acts

with a large number of users (100). The

main factors to look at here are:

• Is it an acceptable load time?

• Is the ’tutorial’ screen clear enough?

(to be implemented)

• What does the sound experience

sound like hearing so many other

8

Fig. 5. A client connects.

devices along the one you are con-

trolling?

• Can it load on different devices?

• Can you tell what is your part? Is

everything in sync?

The next major component that needs

work is the graphics client. This is the

interface that will visualize the clients in-

teractions with the system. For example,

every time a client presses a button, an

explosion graphic appears on the screen.

This visualization will probably be dis-

played on a big projector at the front of the

room during the event, and will be a fun

way for audience members to feel another

sense of participation in a group, as they

can see other clients music even if they

cannot hear it. The actual responsiveness

and accuracy is probably not important

however, because there will be so many

interactions that even if the graphics are

displayed randomly, there will be no way

for people to tell it is inaccurate. The most

important feature here is probably that it

looks fun and engaging, and that it is

obvious to the audience that this visual-

ization represents the audience themselves

and how they interact with the app.

VI. CONCLUSION

While there were challenges present that

are common in most technical projects,

such as accuracy, fault tolerance, user

interface, many of the more interesting

problems came from developing an app

that comes at the intersection of music and

9

Fig. 6. A client interacting with the phone will relay a simple message to the graphics client, which will produce

an animation.

technology, specifically when the users are

not necessarily familiar with music. Be-

cause of the repetitive, motif-filled nature

of the piece, it was important to develop

a way of playing audio that used these

repeats to its advantage, to save buffer

space and load time. In addition, because

of these motifs, roles were developed in

such a way that would highlight these

motifs. Similarly, a simple user interface

was developed with push to hold function-

ality that would allow the user to focus

on the music, instead of the interactions

with the website, since these interactions

are ideally easy to learn and easy to do.

This project allowed me to explore two

passions, music and computer science. It

was exciting and challenging to get to

build something from scratch. Applying

computer science to different fields is al-

ways a learning experience, and poses new

sets of challenges that one doesnt en-

counter normally. This project highlighted

the importance of designing a system to

best match its use case, and how to design

an interface that will be the most helpful

to achieving the goal of the product. I

hope Tutti will bring the joy of music to

those who use it, and will serve as another

example of interactive music systems and

the positive roles they can play in todays

society.

10

VII. SCORE FRAGMENT

Figure 7 depicts a sample of the score

that was the basis for this piece. Sibelius

was used to convert the parts into WAV

files. A, B, and C show different rhyth-

mic motifs, that translate into different

parts. Part A is the solo motif, which is

the recognizable ’we are the engineers’

tune. Part B is the chord bassline, which

is divided into top, middle, and bottom

elements (which correspond to different

buttons). Part C is a faster rhythmic motif,

which is part of another role.

VIII. CODE

This project’s code is available at

github.com/dpenny/Tutti

ACKNOWLEDGMENT

Thank you to my advisor Eran Egozy

for amazing mentorship, advice, and for

introducing me to this opportunity. Thank

you to Evan Ziporyn for composing such

a great piece, and providing advice and

teaching me about the composition pro-

cess.

REFERENCES

[1] Choi, Eun-Seok. ”2005 IEEE International Con-

ference on Industrial Technology.” IEEE Xplore -

Conference Table of Contents. 2005 IEEE Inter-

national Conference on Industrial Technology, 14

Dec. 2005. Web. 13 Dec. 2016.

[2] Chupka, Zachary. ”INTERACTIVE MUSIC SYS-

TEMS.” WPI (2014): n. pag. Print.

[3] Fabiani, Marco, and Roberto Bresin. ”Moodifier-

Live: Interactive and Collaborative Expressive Mu-

sic Performance on Mobile Devices.” Conference:

Proceedings of the International Conference on

New Interfaces for Musical Expression (n.d.): n.

pag. Web.

[4] Lee, Sang Won. ”Echobo : A Mobile Music Instru-

ment Designed for Audience To Play.” Music and

Acoustics (2013): 65-113. Nime.org. Web.

[5] Oh, Jieun, and Ge Wang. AUDIENCE-

PARTICIPATION TECHNIQUES BASED ON

SOCIAL MOBILE COMPUTING (n.d.): n. pag.

Stanford. Web.

[6] Weitzner, Nathan, Jason Freeman, and Stephen

Garrett. ”MassMobile an Audience Participation

Framework.” (n.d.): n. pag. Nime. UMich EECS.

Web.

11

Fig. 7. A sample of the score. See section VII for more details

