

6.UAP Project

FunPlayer:

A Real-Time Speed-Adjusting Music Accompaniment System

Daryl Neubieser

May 12, 2016

Abstract:​ This paper describes my implementation of a variable-speed accompaniment

system that can follow along with a real-time MIDI piano performance based on a

chord-matching algorithm. I first provide a general background on previously developed

accompaniment systems. I then give the implementation details of my project. Lastly, I

analyze the performance of the system and offer suggestions for future work that could

continue to improve it.

1 Introduction

When trying to play covers of popular songs on the piano, components such as the

vocals, drums, or guitar, are lost. Because of this, playing a transcribed version of a song

often sounds lacking compared to the original. The system presented here is a

variable-speed accompaniment player that fills out those other components with the

timing of the cover. As a user plays an instrument in real time, the system plays a digital

audio file as an accompaniment that stays with the performer by listening and adjusting.

The software is used as follows. The user inputs a youtube link or audio file of the

song they want to learn, as well as its associated accompaniment, for instance a vocal

track of the song. The system is then attached to a MIDI input. As the performer plays the

song, MIDI events are transmitted to the system, and the system plays a tempo-adjusted

audio track to match the estimated tempo of the MIDI notes it receives. The end result is

the performer and the accompaniment playing in synchrony. Figure 1 outlines the

connections between the inputs to the system with the tempo-adjusted output.

Figure 1: Flow chart of inputs and outputs to FunPlayer system.

1.1 Related Work

Computer controlled accompaniment is not a new problem. In developing

FunPlayer, three accompaniment players were researched: Cadenza, Orchestral 1

Accompaniment for Piano, and Antescofo. 2 3

Cadenza is an iPad app produced by Sonation that provides orchestral

1 “Cadenza | FAQ,” ​Cadenza by Sonation, ​2016.​ ​http://www.sonacadenza.com/support/.
2 Raphael, Christopher, and Yupeng Gu. "ORCHESTRAL ACCOMPANIMENT FOR A REPRODUCING
PIANO." (n.d.): n. pag. Web. 7 May 2016.
3 Arshia Cont. ANTESCOFO: Anticipatory Synchronization and Control of Interactive Parameters in
Computer Music.. ​International Computer Music Conference (ICMC)​, Aug 2008, Belfast, Ireland.
pp.33-40, 2008.​ ​<hal-00694803>

https://hal.inria.fr/hal-00694803
https://hal.inria.fr/hal-00694803

accompaniment to violin and singing. They are limited to providing accompaniments for

certain songs because they require marking up each of those songs to know what parts are

soloist-driven, in order to know how to time the accompaniment. Essentially, every song

needs to be specifically tuned to be compatible with their system.

Orchestral Accompaniment for Piano supports a more complex input - piano,

which means the system must, unlike Cadenza, handle polyphonic inputs. However, this

system also needs to know the exact score in advance.

Antescofo is another real-time score-following system. It can be used to

synchronize a live performance with computer-generated music elements, and is

continuing to be developed to improve tools for writing and timing computer music

interaction.

In contrast to the aforementioned systems, FunPlayer is more flexible in that it

only requires an estimate of what kinds of notes will be present in a song, allowing it to

operate on a wider variety of songs with less human involvement to initialize the system.

However, as a tradeoff for increased accessibility, FunPlayer has a disadvantage in terms

of accuracy of score position estimation.

Additionally, both Cadenza and Orchestral Accompaniment for Piano also

improve accuracy with multiple iterations of performances by their models learning a

performer’s habits through each iteration. This was not a priority for the first version of

FunPlayer, but it may be possible to learn from these systems and implement a similar

feature in the future.

1.2 Goals

The main design goal for this system is to create a seamless process to create

songs and play right away.

The system allows a musician to play a song by ear and make mistakes, but still be

able to be accompanied moderately reliably. The ultimate goal is for the system to aid the

performer in the entire process of learning a song by ear: adjusting for increases in tempo

as the performer becomes more familiar with different sections of a piece and providing

real-time audio feedback on incorrect notes.

2 Design & Implementation

The FunPlayer system consists of a model and controller, as well as a set of

libraries to help analyze the music and process audio samples to provide a pitch-shiftless

tempo-altered playback. This section describes the implementation of the Model and

controller and how certain outside libraries are used to complement the system.

2.1 Model

The Model analyzes a real-time stream of note-playtime and pitch information to

help the system predict how the rest of the song will be played. It converts note-playtime

and pitch information from the MIDI input to inform the Controller a timestamp of the

performer’s estimated position in the original song.

The model is based on an analysis of the original song’s audio file. The analysis

used in the first iteration of FunPlayer breaks the song into sections of different chords, as

shown in the Figure 2 below.

Figure 2. Result of chord analysis used by model

A model has to implement two functions.

● getScore() : Return a numerical value indicating the likelihood of the model being

accurate.

The highest scoring model is the one the system thinks is most likely

● addNote(<Pitch,Time>): Update the model based on new received information. If

the note is in line with the model’s expectations, it will increase the score.

Otherwise, it will decrease score.

The system uses the Model as follows. Many possible Models are created and are scored

according to how well they conform to observed note pitches and timings. At the time of

the latest received note, the highest scoring Model is used to inform the Controller of its

timestamp estimation. Two types of models were tested: the Note Assignment Model and

the Tempo Offset Model. The Note Assignment Model was developed first, but due to

performance issues, FunPlayer currently uses the Tempo Offset Model.

2.1.1 Note Assignment Model

The Note Assignment Model works by assigning input note to a number of

possible ​chords​ it could belong to. Every combination of assignments constituted a

potential model. Based on evenness of tempo and individual likelihoods of each given

note belonging to a given chord, all potential models are given a score, and the highest

scoring model is used to give direction to the Controller.

The Note Assignment Model works well for simple songs and short songs, but it

has two main drawbacks. First, the number of potential models to evaluate increased

exponentially with every new note received. And second, even given a “correct” model, it

is difficult to translate a set of note assignments into a tempo change input for the

Controller. For these reasons, an alternate model design was sought and the Tempo

Offset Model was developed.

2.1.2 Tempo Offset Model

In the Tempo Offset Model, each possible model is parameterized with a tempo

and time offset from which the played input differs from the original. This gives the

model two key advantages over the Note Assignment Model. The first is that the model

description is simpler. Two constants - the tempo and the offset - describe each possible

model. In contrast, the number of assignments in the Note Assignment Model scaled

linearly with the number of notes.

The second advantage is that Tempo + Offset translates easily to instructions for

the Controller, where it seeks to reach the modeled tempo, while minimizing the

difference in offset.

Though the optimal choice of what tempo and offset combinations to test may

depend on certain expectations of the performer, the system was tested to perform well

testing up to 20,000 combinations at a time. The default range of models tests tempo

differences between factors of 0.9 and 1.1, and offsets of +/- 2.5 seconds.

The Tempo Offset Model adjusts score in the following way. Each new note’s

time is adjusted according to the following equation.

adjustedNoteTime = tempo * receivedNotetTime + offset

Then, it searches the chord list to find the chord associated with that time. Based

on the likelihood of the note’s pitch appearing in that chord, the score is adjusted. A note

that is the same as the root of the chord increases score by 2, and a note that is a third or

fifth in the chord increases score by 1. Variations in scoring values were tested, but did

not make any substantial difference in system performance.

Finally, the score is more heavily weighted towards the most recently received

notes. This allows the model to handle tempo changes mid-song by exponentially

reducing the impact of earlier played notes on the score.

As a final enhancement to the system, the offset of the highest scoring model is

further adjusted to match the beat markings obtained from BeatRoot , a beat-marking 4

command-line tool. BeatRoot further divides the each of the chords obtained in the

analysis into individual beats. This is necessary since the other calculations don’t take

into account where in the chord each note is played. The offset chosen is the one that

minimizes the sum of differences between beats and the nearest played notes.

Figure 3: The order of processing the input MIDI stream. Because chords span many seconds, models that
differ in offsets by tenths will score the same. Then, select the offset that minimizes distance from notes
to expected beats.

4 Dixon, Simon. "Evaluation of the Audio Beat Tracking System BeatRoot." ​Journal of New Music
Research​ 36.1 (2007): 39-50. ​BeatRoot​. Web.

2.2 Controller

The controller’s purpose is to adjust the speed of the accompaniment file so that it

synchronizes with the input.

The controller first obtains the desired tempo and offset from the model, and

calculates the current offset based on how many samples of the accompaniment file have

been processed. Then, it sets the accompaniment file tempo according to the following

expression:

Set tempo = ​modelTempo ​+ (currentOffset-​modelOffset​)*(alpha).

Thus, the controller will first play the accompaniment file at a tempo that will

correct the error in offset. As that error approaches 0, the tempo of the accompaniment

playback will approach the modelled tempo of the input. Alpha was set to .5 for all tests,

allowing for both fast convergence and infrequent overshoots.

2.3 Libraries Used

FunPlayer uses libraries and services to aid both the model and the controller.

The Model uses Riffstation , an online chord analysis to tool, to obtain a mapping of 5

times to chords to define likelihoods of certain note pitches at certain times. It also uses

beat markings created by BeatRoot to determine the offset that lines up played notes best

with the calculated beat of the song.

5 "Play Riffstation." ​Riffstation​. N.p., n.d. Web. 10 May 2016.

The Controller uses outside libraries to handle the actual modification of the audio

stream. TarsosDSP is used as an interface for music processing. The specific process

applied in the system is through the RubberBand JNI interface, which allows the

controller to apply a time-stretch on audio samples without causing any change in pitch.

3 Benchmarks

This section evaluates the ability of FunPlayer to adjust to deviations between

played notes and the expected chord progressions and timings generated by analysis of

the original song.

The benchmarks focus solely on objective, repeatable metrics that measure how

quickly the model FunPlayer uses is able to adjust to changes in played notes. Though the

goal of the project is accompanying real-time music, the system was tested on a series of

MIDI sequences that simulate a live performance.

The tested MIDI sequences were generated to exactly correspond to a known

sequence of chords and durations. Then, different transformations were applied to that

MIDI sequence to simulate performance idiosyncrasies, such as pauses, tempo changes,

or note errors. An error was calculated as the difference between the model’s estimation

of song location and the transformed-back location of the MIDI sequence. All of the plots

below were constructed by evaluating system response to this test MIDI sequence.

This error metric measures the difference in tempo or offset for two reasons. First,

it is easier to visualize the single time error value than the two dimensional

<tempo,offset> vector. Second, the controller adjusts the playback of the original audio at

a rate proportional to the error, so it is also a significant value with respect to the function

of the system.

3.1 Comparison to Fixed Tempo Audio

As seen in plot 1, the system is able to quickly adjust to a change in tempo that

would be a problem for a constant-speed accompaniment. Despite the input adjusting by

an instantaneous tempo increase of 10% at 40 seconds in, the system was able to remain

within 0.25s of the playback, and averaged an absolute error of 0.13s. Though it initially

follows the trajectory of the fixed tempo system, at 41.1 seconds, a note from the next

expected chord is played earlier than expected, changing the highest scoring

tempo+offset model.

By 47.3 seconds, the weight of the initial 40 seconds of recorded notes has fallen

off exponentially by enough that the notes following the faster tempo outweigh, and the

system returns to an error of zero.

Plot 1: Though FunPlayer (red line) takes time to completely adjust to a change in tempo of 10%, it
remains within a much lower error than an accompaniment that uses a constant tempo (blue line).

3.2 Latency of Tempo Adjustment

When changing tempo abruptly in the middle of a song, FunPlayer will take time

to correct its modeled tempo to the new tempo. As shown in Plot 2, at instantaneous

tempo shifts of up to 10%, the system was able to maintain an average error of about

0.1s, peaking at less 0.25 seconds.

Also worth noting is that, as one might expect, the smaller changes in tempo such

as the 5% increase shown in the plot result in a lower error effect than the 10% increase.

Plot 2. Though FunPlayer takes up to 10 seconds to adjust to a change in tempo, average error during the
adjustment time is relatively low at under 0.2s and not too noticeable audibly.

3.3 Detecting Pauses

Plot 3 below depicts the system’s response to a pause in performance by the user.

An example scenario where a pause like this may take place would be the user taking a

second time turn the page on his sheet music, and then continuing with the piece at the

same tempo.

The reason the maximum error is higher in this scenario than the previous is there

is much more uncertainty during a pause. The system has no current way of determining

whether a pause is due to a mistake on the performer’s part, or if it’s intentional waiting

through a solo section of another instrument.

The temporary error in pausing is so large compared to the speed-changing error

for another reason. Sometimes performers will miss notes, but keep playing the rest of the

song as normal. In this case, the tempo and offset should not change during the pause.

Minimizing the error for these two different types of pauses is impossible; having a large

temporary error for one of them is inevitable.

Plot 3: After a pause at 40 seconds, estimation error is relatively large for the next 5 notes played. Then,
error decreases to within .1s until finally reaching 0.

4 Analysis and Future Work

As one might expect, actually performing a song does not correspond exactly with

any of the simulated scenarios listed above. However, these scenarios give some insight

to how well the system performs on an actual song and performance.

Overall, the system performed inconsistently depending on what song was chosen.

Especially since the “best” accompaniment timing is subjective, it is difficult to know

exactly what makes some songs work better than others; however, this section lists a few

observations of areas that could be improved.

RiffStation gives the wrong chords for certain songs, or is not specific enough.

Though the system is robust enough to handle a slightly incorrect analysis, occasionally

RiffStation’s chord timings would lack in several places throughout a song. An example

of a common error was listing the same chord for 10 seconds, when actually 2 different

chords were being alternated. Since the system relies on the differences in expected notes

between chords, having chord segments so long limits the ability of the system to

accurately track the performer’s location in the song.

Access to better chord analysis tools would help solve this problem, but future

work could also include using melody extraction to provide a second set of data points to

compare against. This would also allow the system to handle songs that have infrequent

chord changes or a lack of them entirely. Since the current version relies on chord

changes to build its estimation model, it would need an additional feature like melody

comparison to function.

Another limitation of the system is it takes time at the start of the song to converge

upon the correct model. Other similar systems rely on training the models on the same

performer in order to improve accuracy, which would be especially noticeable at the

beginning. A future iteration of this system could apply the same principles, or simply

include an option to specify an estimated starting tempo to facilitate reaching a small

error faster.

5 Conclusion

Overall, FunPlayer works quite well with songs that the chord analysis is accurate

on. Most accompaniment software requires knowledge of every expected note a

performer will play. However, FunPlayer has shown that, especially as music analysis

technology improves, accompaniments are able to be programmed according to less

definite models of note likelihood. Hopefully, FunPlayer can open the door for a greater

variety of music to be made into an automatic accompaniment, and aid in the process of

learning and enjoying music.

6 References

1. “Cadenza | FAQ,” ​Cadenza by Sonation, ​2016.​ ​http://www.sonacadenza.com/support/​.
2. Raphael, Christopher, and Yupeng Gu. "ORCHESTRAL ACCOMPANIMENT FOR A

REPRODUCING PIANO." (n.d.): n. pag. Web. 7 May 2016.
3. Arshia Cont. ANTESCOFO: Anticipatory Synchronization and Control of Interactive Parameters in

Computer Music.. ​International Computer Music Conference (ICMC)​, Aug 2008, Belfast, Ireland.
pp.33-40, 2008.​ ​<hal-00694803>

http://www.sonacadenza.com/support/
https://hal.inria.fr/hal-00694803
https://hal.inria.fr/hal-00694803

4. Dixon, Simon. "Evaluation of the Audio Beat Tracking System BeatRoot." ​Journal of New Music
Research​ 36.1 (2007): 39-50. ​BeatRoot​. Web.

5. "Play Riffstation." ​Riffstation​. N.p., n.d. Web. 10 May 2016.

