
Computer-Aided Autocompletion of Cadential Harmony

Gabriel Lesnick

May 11, 2016

Abstract

The most popular Computer-Aided Algorithmic Composition systems are primarily algorith-
mic, having little human input to aid. We investigate the merits of more human-involved CAAC
systems through analysis of our implementation of an autocomplete-type Hidden Markov Model
that determines algorithmically the cadential harmony of a human-composed chord progression.
We find that this system demonstrates potential to help humans compose music in creatively and
stylistically consistently.

1 Introduction

Musicians have been quick to attempt to inte-
grate computer processing techniques and elec-
trical sound manipulations into composition and
performance ever since the advent and subse-
quent development of computer and electrical
engineering in the last century. Composers es-
pecially have taken a keen interest in technol-
ogy as a vehicle for the Avant-Garde [6, 8, 9],
although there is a strong following in musical
analysis as well [7]. Composing with computers
usually involves setting the composer’s idea of
music-making in the form of an algorithm in or-
der to have the computer produce music as the
composer would. Such purely algorithmic sys-
tems, whether based in automata or neural nets,
whether deterministic or stochastic, are invari-
ably limited, however, in that their composing is
unsupervised. In other words, the computer is
given a series of inputs and then outputs a com-
pleted work, but without any interaction with

the human composer in between. Without hu-
man input, it is unclear to what degree compo-
sition algorithms, given the current progress in
artificial intelligence, can actually compose [5].
However, whether it is the human programmer
or the algorithm itself creating the music, the
important point is that a purely contained algo-
rithmic system that takes some input and then
produces a musical output is strictly less power-
ful than a system that interacts with a human
before outputting, simply because the external
interaction gives the system a broader creative
state-space in which to compose. It is of inter-
est, then, to experiment with exactly how to set
up a composition system with human interaction
so as to make use of this expanded state-space
and produce maximally creative music.

This idea of artist as union of human and
computer can be reached equally well from the
notion of musical complexity. With trends to-
ward increasing complexity [11] and chaos [10]
in contemporary music, there is more and more

1

potential for computers to assist humans with
the great tedium and increasingly unfathomable
scope of immense, complicated scores. Such
computer assistance could allow a human com-
poser to focus more on form, development, and
other important large-scale structural elements
of a composition by automating lower-level ne-
cessities. A computer that could simplify and
expedite the process of transcribing to the no-
tated score the thoughts and ideas of the com-
poser would increase the fidelity, and theoreti-
cally also the creative potential, of such ideas.

Between these two distinct but related pur-
suits of purely algorithmic composition and com-
plex human composition lies a vast gulf of po-
tential in Computer-Aided Algorithmic Compo-
sition (CAAC) that remains largely underdevel-
oped. Upcoming CAAC programs will allow hu-
man composers to achieve high degrees of com-
plexity without unreasonable effort while also
giving algorithmic composition systems the hu-
man supervision they need in order to achieve
creative results [5]. Still, some extant CAAC
software like OpenMusic [1] developed at IR-
CAM already show a lot of promise, with off-
shoot products like Composer’s Assistant en-
abling Finale users to generate chords and fill
in missing melodies [4].

Along this vein, we have implemented a CAAC
system to perform autocompletion for chord pro-
gressions. We employ a Hidden Markov Model
(HMM) to algorithmically finish (i.e. provide a
cadential chord for) human-composed chord pro-
gressions. The hypothesis behind this is that
in general, a good chord progression has only a
few possible cadences so that a sufficiently well
trained machine learning model should be able
to find and suggest one of these few possibilities.
This system is obviously only the beginning of
what would be necessary to unite the composi-

tional abilities of human and machine. However,
the system we have created, rudimentary and
low-level as it may be, gives evidence towards the
immense creative potential available from such a
union.

2 Implementation

Our CAAC program is written in Python (see
Appendix) using music21 [2] to process the
MIDI-formatted music data and the hmmlearn
[3] branch of scikit-learn to power the HMM. The
program consists of three overarching stages,
namely those of data processing, HMM initial-
ization, and finally cadence prediction.

In the data processing stage of the program,
a selected corpus of music data is collated and
made python-compatible, from which the final
cadence of each piece in the corpus is extracted.
In the next stage, system initialization and train-
ing, the number of states for the HMM is opti-
mized and the system is trained on the cadence
data. In the final stage, the trained HMM is used
to suggest a cadential chord, either by using the
HMM’s score function to assess randomly gen-
erated cadences or by using the transition prob-
abilities of the HMM to directly emit a proba-
bilistically sampled cadence.

Setting up the training data well is one of
the most important things to do to get good re-
sults from an HMM. To this end, our program
interfaces with two large datasets from which we
can extract thematic subsets to train the pro-
gram. The first dataset is the corpus that comes
installed with music21 and from which subsets
can be generated by a simple keyword search.
We used this corpus, for example, to generate a
data subset of 471 cadences from various Bach

2

Generate	cadences	

Initialize	system	

Set	up	data	
Save/load	cadence	data	

Save/load	HMM	models	

Set	cadence	parameters	

Set	data	parameters	

Check	with	test	cases	

Set	training	parameters		

Figure 1: System block diagram.

pieces using the keyword “bwv”. The second
dataset is from the website kunstderfuge.com,
which hosts a wide range of sequenced MIDI
files for pieces ranging from Baroque to Modern.
This MIDI data can be easily manipulated with
music21 and lets us create more contemporary-
leaning training data than the music21 corpus.

After collecting a large and complicated data
subset from one of these sources, the next step
of the program is to extract cadential chord pro-
gressions from each piece in the dataset. For sim-
plicity, and because we have access to so many
pieces, we decided to extract just one cadence
from each piece, namely the final cadence since
it is the easiest to isolate. The pieces from which
we extract the chords, however, are not neces-
sarily very regular in that there may be passing
chords, a variable number of notes per chord,
and a different progression length in each piece.
In order to make these progressions compatible
with the HMM, then, we regularize them by en-
suring that each progression has the same num-
ber of chords and that every chord has the same
number of notes. We use the global parame-
ters CHORDS PER CADENCE and NOTES PER CHORD

to specify these numbers, and in addition we

also use the BEAT STRENGTH MINIMUM parameter
to pick chords only on strong beats to avoid pass-
ing chords. One final thing that must be done
to ensure consistency is to normalize each chord
progression to the same key. We use the key
of the cadential chord, calculate by music21, for
this purpose, subtracting the key and then find-
ing the remainder modulo 12 to normalize each
note to a value between 0 and 11. These meth-
ods for regularization were chosen for their abil-
ity to make the data compatible with the HMM,
but it is certainly possible that there are better
methods. This would be a good task for future
work.

One final consideration for the training data
is that in order for the HMM to “know” that the
data it sees is cadential, the data must have some
structure in addition to the note values of the
chords. The additional structure we impose is an
extra field designated to mark progress towards
the cadence. In other words, if NOTES PER CHORD

is set to 4, for example, then each data point fed
to the HMM will actually consist of five values:
the four note values and an extra value designat-
ing whether or not this chord is a cadence. For
the sake of control, this cadence-marking ability
can be configured, so that the CADENCE MARKER

value determines the weight of the cadence mark.
If so desire, the cadenceMark function could be
reset as well to implement any other algorithm
for cadence marking.

Initialization of the system can take place
once the training data has been processed. We
instantiate a GaussianHMM object and then call
its fit method on each of the six-chord caden-
tial progressions to train it. Before we can train,
however, we have to ensure the HMM is prop-
erly configured with an optimal number of states.

3

The program allows the user to either specify
a number of states, or if a good number is not
known, the program can be made to determine
the optimal number of states.

The method used for automatically optimizing
the number of states employs the training data
to self-assess how accurately the HMM fits this
data. Starting with a small number of states, we
train a model HMM on half the training data.
We then use this model system to score the other
half of the training data. We repeat this train-
ing and scoring process, incrementing the num-
ber of states, until the score stops increasing.
We want to find the number of states that best
fits the data without overfitting - the number of
states reached when the score stops increasing is
a very good (and efficient) estimate of this opti-
mal number.

Generating the output cadence becomes
possible once the system is properly initialized.
Given a complete cadential chord progression
without a cadence, the HMM can algorithmi-
cally suggest the cadence. Our program actually
offers two methods for suggesting this cadence,
each tailored to a slightly different functionality.
The first method is to search the space of all ca-
dences and locally maximize the chord progres-
sion’s score with stochastic gradient ascent while
the second method is to emit a cadential chord
using the transition probabilities of the HMM it-
self and the highest-likelihood sequence of states
associated with the inputted chord progression.

The gradient ascent method makes the most
sense when the cadence-marking option is en-
abled. Specifically, we can force this method to
provide us with a cadential chord by constraining
the state-space from which the potential chords
are picked to the set of chords that are marked as

cadential. In other words, since we are (stochas-
tically) choosing chords to feed into the gradi-
ent ascent, we can generate these chords so that
they are definitely cadences. This is as opposed
to the second method, where we have no ability
to constrain the chord that is generated. In the
second method, however, we are more likely to
get high-fidelity data since instead of just ran-
domly searching the state-space of possible ca-
dences for a good match, we use the preexisting
structure of the HMM itself to decide what the
most likely chord is. So while the first method
is only guaranteed to find a local maximum, this
method will theoretically find the global maxi-
mum for the best-fit cadential chord, assuming
that such a global maximum exists.

3 Results

We used a number of test cases to see how our
program fares in comparison to real human com-
posers. Since this program is concerned primar-
ily with new composition, we used mostly mod-
ern or contemporary test cases so as to test ca-
pacity for contemporary ideas. For complete-
ness, though, we also include a sample from
Beethoven.

All of these test cases are generated from an
HMM trained on a corpus of Bach music. This
dataset obviously gives the system a bias towards
consonance and tonality, but for contemporary
pieces that are quasi-tonal enough to be consid-
ered to have chord progressions, this is of inter-
est. In Figures 2-6, the original cadential pro-
gression is followed by two generated cadences,
the first generated by gradient ascent and the
second from state emission.

Note that we did not yet get good data for
these test cases from any training sets besides

4

Figure 2: Beethoven - Symphony No. 9, cadence to Turkish March.

Figure 3: Schoenberg - Chamber Symphony No. 1, Adagio theme.

Figure 4: Lutos lawski - Concerto for Orchestra, mm. 271-286.

5

Figure 5: Messiaen - L’ascension, First and Third movements

Figure 6: Ligeti - Hamburg Concerto, Hymnus mm. 13-15.

Figure 7: Chord sequence from random seed.

the Bach corpus. The kunstderfuge.com data is
interesting to test the system with but is unfor-
tunately not at a sufficient stage of development
to enable meaningful results.

In any case, there is still plenty to be gleaned
from just this Bach data, especially because

the Bach data is easy to understand - the
well-defined tonal nature of Bach’s progressions
makes it possible to distinguish between what
the HMM is getting from the training data and
what it understands about the style of each test
case itself. It is clear, for example, that as the

6

test cases go from triadic harmony (Beethoven,
Figure 2) to pure atonality (Ligeti, Figure 6),
the generated chords remain essentially triadic.
This is of course a result of training the HMM on
triadic data - it only produces chords of a kind
that it has seen before. This is a good sign! It
means the HMM is actually picking up relevant
information from the training data. It would
be good to see how this would work with a full
compendium of contemporary data to make sure
this training works universally - it is possible, al-
though seemingly unlikely, that the current suc-
cess of the training with Bach data is due to the
specific constraints set up in the parsing of the
data and that other data would not be as suc-
cessful. Further testing would be necessary to
completely understand this.

Continuation beyond the cadence is an
obvious extension for a chord progression au-
tocompleter. Even though the program is de-
signed, in its current form, to produce only sin-
gle chords, it is still intriguing to see what results
from such a misuse. To do this, we began with
a random seed chord produced by sampling the
trained HMM (trained still with Bach) and then
added “cadential” chords one at a time using the
gradient ascent method. One such realization of
this process is seen in Figure 7. Although this
result is interesting, many other runs quickly sta-
bilized around a single chord, usually a triad.

4 Conclusion

It is evident from the test cases that our program
is able to emulate a lot of the ideas that human
composers have about chord progressions. El-
ements like voice leading, triadic harmony, and
the dominant-tonic cadential relationship clearly

come through from these examples. However,
it is hard to tell how much the system actually
“understands.” A lot of these factors are sim-
ple to approximate but very difficult to emulate
exactly. Voice leading, for example, is easy to
approximate heuristically with the simple rule
that each voice should move by at most two semi-
tones between each chord. However, leaps larger
than a whole tone are obviously important in
standard voice leading and this rule would leave
them out. So it is necessary to assess just how
much the HMM is able to get from the train-
ing data and on the contrary how much of the
success of the program is due to the rule-based
musical constraints we have added to it.

Ability to match human creativity is one
way to assess the HMM, and comparing the gen-
erated cadences in the test cases to the original
cadences is a great way to do this. A brief look
at the test cases shows that at least voice leading
is well emulated, and it is apparent that also the
style of each test case is at least partially pre-
served in the generated cadences. One obvious
thing that is missing in the generated cadences,
however, is that they are never exactly the same
as the original cadence, meaning that the HMM
is not as powerful as the humans it is trying to
emulate.

The success of the voice leading, although im-
pressive, is also a bit deceptive. In order to make
the HMM indifferent to key, the input chord pro-
gression is normalized to be rooted on C0. The
notes of the generated cadence are then octave-
transposed until they are as close as possible to
those of the penultimate chord. So the octave
positions of each chord are not determined by the
HMM. Still, the fact that the generated chords
are so often within a semitone or two of the pre-

7

ceding chord is encouraging, since this variation
within the octave is indeed decided by the HMM.

Even more encouraging is the fact that the
generated chords seem to have approximately
the same style as the original cadences, indeed
the same style as the rest of the chords in the test
cases as well. In the Beethoven test case (Figure
2), for example, all the chords are triadic, so the
generated cadences are triadic as well. Similarly
in the Schoenberg test case (Figure 3), the chords
are not as consonant but are still mostly triadic,
so the generated cadences are again triadic. The
Ligeti (Figure 6), being manifestly non-triadic, is
completed with a much more condensed seventh
chord, which despite being made from stacked
thirds, is more dissonant than the pure harmonic
cadences of the Beethoven or Schoenberg. The
fact that all the generated cadences consist of
stacked thirds might be disconcerting until you
remember that we used Bach as training data.
So with more contemporary (less triadic) train-
ing data, we would perhaps see a greater degree
of variation in consonance or dissonance of the
generated cadences depending on how consonant
or dissonant the test case is.

Now the lack of exact replication of the orig-
inal cadences by the HMM is troubling, since
the HMM probabilistically considers most pos-
sible cadences and therefore rejects the original
cadence as inferior to whatever cadence it comes
up with. So further fine-tuning would be nec-
essary before this program could more precisely
emulate the original human composers of these
test cases. However, we are looking for evidence
of creativity in this system, not ability to copy
humans exactly, so this is beside the point. A hu-
man composer given these test cases and asked
to complete them with their own cadences would
similarly have trouble recreating the exact origi-
nals but might still be able to come up with some

creative solutions of their own.

Potential for new creativity is another
good way to assess the HMM. Ignoring the orig-
inal cadences in the test cases, what can be said
about the ability of the HMM to be creative?

The most readily apparent shortcoming of this
HMM is its inability to recognize global patterns
like tonal center or position within the progres-
sion. In the Lutos lawski test case (Figure 4),
the generated chords are of the correct (triadic)
sonority, but are in the wrong key. Now in some
ways this is irrelevant; the HMM simply has a
predilection for progressive tonality. But with-
out an ability to generate chords based not just
on immediate neighbors but also greater struc-
ture like tonal center or form, this HMM will be
doomed.

In a smaller scale, though, without regard
to larger patterns like this, the HMM performs
spectacularly. In the Messiaen test case (Figure
5), the HMM generates novel, creative cadences
that sound good despite being in the “wrong”
key. Unless the listener already knew the piece
or knew Messiaen’s style very well, they would
most likely hear the generated cadences as cor-
rect.

The HMM is clearly able to come up with in-
teresting chords with good notions of voice lead-
ing and consonance and dissonance. Of course,
there are still problems to be worked out. The
HMM is not always this good; it often takes a
few runs before a good chord is generated. Bet-
ter training data would have to be collected to
test its capability for more contemporary styles.
The constraints and parameters of the program
would have to be modified to fully optimize it.
So it may not be perfect, but it definitely passes
the mark for creativity.

8

5 Future Work

Although we have made significant progress in
chord progression autocompletion, this is just a
small feature with respect to the full potential
of realizable CAAC systems. Even just within
the subdomain of chord autocompletion, there
is a lot more room for innovation. We added a
lot of constraints, for example, to make the pro-
gram easier to build, like all chords having the
same number of notes, all training progressions
having the same number of chords, and allowing
only one cadential chord to complete each pro-
gression. It would be worth spending some time
in the future unconstraining this program, or re-
searching to see if there are perhaps alternative
constraints that would be more conducive to cre-
ating cadences and would provide better results.
It is doubtless that, given the inclination, a vast
number of potential avenues for improvement of
this program could be pursued; we will present
just a few of these now.

Creating a good GUI for this program
would make it utilizable for its intended pur-
pose: helping humans compose. It is still use-
ful as proof of concept in its current state, but
it would only be useful in during composition
if it were fleshed out with an interface. Ideally,
the composer would use notation software like
Sibelius or Finale to write music and would be
able to invoke this progression auto-completion
feature as a plugin with one click of a button.
The plugin would suggest a cadential chord to
the user and if it were to the user’s liking it would
then be added to the score. This functionality
as described is a long way away. But it is good
that we now have a proof of concept for this kind
of plugin - we have taken the first step.

Training with more accurate data would
help to make the HMM more accurate. However,
this is much easier said than done. The act of ac-
curately isolating and homogenizing data from a
variety of different musical styles and eras is close
to intractable. Even just within the Bach data,
for example, it is exceedingly difficult to algo-
rithmically decide which chords are part of the
functional harmony, which notes are not passing
tones, and where a chord progression starts and
ends. It almost seems appropriate to create an
entire HMM to process the music data.

Having a meta-system like this to process data
to train the real system is impractical, but the
end result of having good training data is neces-
sary to get the full system working with high fi-
delity. Without high quality training data, there
is no chance that the HMM will be able to pick
up on the full complexity and nuance of music
composition. The question now is how to get
high quality data.

Generating more than one chord at a time
would allow for more novel capabilities. Chord
progression autocompletion would itself be ben-
efitted by the possibility of multi-chord cadences
since then chord progressions could be success-
fully completed in ways potentially more clever
and creative than just appending a single chord.
This idea could be extended further, however, to
such novelties as modality bridging, that is, au-
tomatically generating a chord or set of chords
to pivot between modalities, or even melody har-
monization. Such higher level modes of chord
generation would necessitate better and more
fluid ways of representing chord data and would
require reformulation, or removal, of some of the
other constraints set in the current version of the
program beyond just the number of chords gen-

9

erated at a time. For example, pivoting from
a modality expressed in three-part harmony to
one expressed in four-part harmony would only
be possible if the constraint that all chords have
the same number of notes were lifted.

Other machine learning models might be
better suited to chord autocompletion than Hid-
den Markov Models. HMMs make intuitive sense
since music often feels as if it proceeds from
state to state, with recurring musical elements
connected by transitional material in often well-
defined ways. But it is entirely possible that
such a heuristic idea misses some other sort of
machine learning model that might behave bet-
ter. Just because music might seem Markov-like
does not mean that the best way to create music
is with an HMM - at least, most human com-
posers would balk at the idea of writing music
in such a way. This is not to say that HMMs
are badly suited for the task at hand of chord
generation, but only that it would definitely be
worth assessing the capabilities of other models
as well.

A few small bugs still remain that should be
fixed. In particular, the algorithm that trains the
HMM conflicts with the cadence marking when
this functionality is activated, often producing
an error from degeneracy. We are currently get-
ting around this by keeping the CADENCE MARKER

value small (a value of around 0.3 works) so as
to minimize the degeneracy in the data and let
the HMM training proceed. It would be nice,
however, to be rid of this degeneracy altogether,
but unfortunately this is work for the future.

References

[1] http://repmus.ircam.fr/openmusic/home.

[2] http://mit.edu/music21/.

[3] http://github.com/hmmlearn/hmmlearn.

[4] Products of interest. Computer Music Jour-
nal, 26(2):113–125, 2002.

[5] C. Ariza. The interrogator as critic: The
turing test and the evaluation of generative
music systems. Computer Music Journal,
33(2):48–70, 2009.

[6] A. R. Burton. Generation of musical se-
quences with genetic techniques. Computer
Music Journal, 23(4):59–73, 1999.

[7] M. S. Cuthbert and C. Ariza. music21: A
toolkit for computer-aided musicology and
symbolic music data. In International So-
ciety for Music Information Retrieval, 11th
Conference, 2010.

[8] S. R. Holtzman. Using generative gram-
mars for music composition. Computer Mu-
sic Journal, 5(1):51–64, 1981.

[9] K. McAlpine, E. Miranda, and S. Hoggar.
Making music with algorithms: A case-
study system. Computer Music Journal,
23(2):19–30, 1999.

[10] R. Steinitz. Music, maths and chaos. The
Musical Times, 137(1837):14–20, 1996.

[11] B. Truax. The inner and outer complex-
ity of music. Perspectives of New Music,
32(1):176–193, 1994.

10

6 Appendix: Python Code

1 import numpy as np

2 from hmmlearn import hmm

3 import pickle

4 from music21 import *

5
6 # constants used in isolating chord progressions from corpus data

7 NOTES_PER_CHORD = 4

8 CHORDS_PER_CADENCE = 6

9 BEAT_STRENGTH_MINIMUM = 0 # set to nonzero to select for strong beats

10 CADENCE_MARKER = .3 # set to nonzero to use cadence marker

11 NUMBER_STATES = 13 # set to zero to use state optimization algorithm

12
13 def cadenceMark(data , lists=False , cadence=False):

14 if lists:

15 for chords in data:

16 for chord in chords [:-1]:

17 chord += [0]

18 chords [-1] += [CADENCE_MARKER]

19 elif cadence:

20 data += [CADENCE_MARKER]

21 else:

22 for chord in data [:-1]:

23 chord += [0]

24 data[-1] += [CADENCE_MARKER]

25
26
27 # method to extract list of chord progressions from corpus

28 def getCorpusData(searchTerm):

29 # try to load data from searchTerm

30 try:

31 dataFile = open(’corpus_subsets.txt’, ’r’)

32 try:

33 dataDict = pickle.load(dataFile)

34 if searchTerm in dataDict:

35 data = dataDict[searchTerm]

36 if CADENCE_MARKER != 0:

37 cadenceMark(data , lists=True)

38 return data

39 except EOFError:

40 dataDict = {}

41 except IOError:

42 dataFile = open(’corpus_subsets.txt’,’w’)

43 dataDict = {}

44
45 corpusMetadata = corpus.search(searchTerm)

46 corpusData = [piece.parse() for piece in corpusMetadata]

11

47 chordData = [flattenChords(piece.chordify ()) for piece in corpusData]

48 data = [getCadentialHarmony(piece) for piece in chordData]

49 data = [piece for piece in data if piece != []]

50
51 # save completer with pickle

52 dataDict[searchTerm] = data

53 dataFile.close ()

54 with open(’corpus_subsets.txt’, ’w’): pass

55 with open(’corpus_subsets.txt’, ’w’) as dataFile:

56 pickle.dump(dataDict , dataFile)

57
58 if CADENCE_MARKER != 0:

59 cadenceMark(data , lists=True)

60
61 return data

62
63 # translate music21.chord to list of midi pitches

64 def chordToList(chord):

65 return [pitch.midi for pitch in chord.pitches]

66
67 # translate list of midi pitches to music21.chord

68 # NOTE: must add and subtract 12 to keep correct octave

69 def listToChord(chordList):

70 c = chord.Chord([note + 12 for note in chordList])

71 return c.transpose(interval.Interval (-12))

72
73
74 # translate list of lists of midi pitches to music21.stream

75 def makeChords(chordList):

76 s = stream.Stream ()

77 for midiChord in chordList:

78 tempChord = listToChord(midiChord)

79 tempChord.type = ’whole’

80 s.append(tempChord)

81 return s

82
83 # translate music21.stream to list of lists of midi pitches in progression

84 def flattenChords(chords):

85 chordList = []

86 # normalize chord data to root of first chord

87 for chord in chords.recurse (). getElementsByClass(’Chord’):

88 # filter out passing chords

89 if chord.beatStrength >= BEAT_STRENGTH_MINIMUM:

90 tempChord = chordToList(chord)

91 root = chord.root (). midi

92 tempChord = getDistinctPitches(tempChord)

93 chordList += [tempChord]

94 return (chordList , root)

95

12

96 def getDistinctPitches(chord):

97 pitches = []

98 for pitch in chord:

99 p = pitch % 12

100 if p not in pitches:

101 pitches += [p]

102 pitches.sort()

103 return pitches

104
105 def getCadentialHarmony(piece):

106 chordList = piece [0]

107 root = piece [1]

108 if len(chordList) <= 5:

109 return []

110 cadence = chordList [-6:]

111 for i in range (6):

112 diff = (NOTES_PER_CHORD - len(cadence[i]))

113 if diff >= 1:

114 cadence[i] = cadence[i] + [cadence[i][0]] * diff

115 elif diff <= -1:

116 cadence[i] = cadence[i][: NOTES_PER_CHORD]

117 cadence[i] = [(note - root) % 12 for note in cadence[i]]

118 return cadence

119
120 # preliminary method to train HMM system (completer) on music21.corpus data

121 def getCompleter(name = ’bwv’):

122 print "Training HMM."

123
124 chordData = getCorpusData(name)

125 lengths = [len(piece) for piece in chordData]

126 data = [note for chordNotes in chordData for note in chordNotes]

127
128 # optimize number of states if NUMBER_STATES == 0

129 if NUMBER_STATES == 0:

130 print "Optimizing number of states ..."

131
132 dim = len(lengths) / 2

133 trainLengths = lengths [:dim]

134 trainData = data[:sum(trainLengths)]

135 scoreData = chordData[dim:]

136
137 score = -999999

138 prevScore = -1000000

139 numStates = 0

140
141 while prevScore < score:

142 numStates += 1

143 completer = hmm.GaussianHMM(n_components = numStates)

144 completer.fit(trainData , trainLengths)

13

145
146 prevScore = score

147 scores = map(completer.score , scoreData)

148 score = sum(scores) / len(scores)

149
150 numStates -= 1

151 print "Optimal number of states is ", numStates

152
153 # otherwise use given number of states

154 else:

155 numStates = NUMBER_STATES

156
157 completer = hmm.GaussianHMM(n_components = numStates)

158 completer.fit(data , lengths)

159
160 return completer

161
162 completer = getCompleter(’bwv’)

163
164 # emit next chord from HMM

165 def getNextChord(data , show=False , completer=completer):

166 # normalize data to root

167 root = listToChord(data [0]). root (). midi

168 chords = [[(note - root) % 12 for note in chordNotes] for chordNotes in data]

169 states = completer.predict(chords)

170 state = states [-1]

171
172 completer.set_params(random_state = state)

173 cadence = map(lambda note: int(round(note)),list(completer.sample ()[0][0]))

174 completer.set_params(random_state = None)

175
176 # renormalize to account for "key"

177 for i in range(NOTES_PER_CHORD):

178 delta = (cadence[i] - data [-1][i] + root) % 12

179 if delta >= 6:

180 delta -= 12

181 cadence[i] = data [-1][i] + delta

182
183 data += [cadence]

184
185 # display chord progression with cadence

186 if show:

187 chords = makeChords(data)

188 chords.show()

189
190 return data

191
192 # perform gradient ascent on cadence to find cadence that best fits data

193 def ascent(data , show=False , completer=completer):

14

194 print "Performing gradient ascent ..."

195
196 # normalize data to root

197 root = listToChord(data [-1]). root (). midi

198 chords = [[(note - root) % 12 for note in chordNotes] for chordNotes in data]

199
200 if CADENCE_MARKER != 0:

201 cadenceMark(chords)

202
203 dim = NOTES_PER_CHORD

204 delta = 1000

205 prevScore = -1000

206 prevCadence = chords [-1]

207
208 # iterate gradient ascent until maximum is reached

209 while delta >= .0001:

210 score = prevScore

211 cadence = prevCadence

212
213 # check neighboring positions in chord -space stochastically

214 moves = np.random.randint(-3, 4, (1000 ,dim))

215 possibilities = [[prevCadence[i] + move[i] for i in range(dim)]

216 for move in moves]

217
218 if CADENCE_MARKER != 0:

219 for pos in possibilities:

220 cadenceMark(pos , cadence=True)

221
222 # find possibility with greatest score increase

223 for tempCadence in possibilities:

224 tempScore = completer.score(chords + [tempCadence])

225 if tempScore > score:

226 score = tempScore

227 cadence = tempCadence

228
229 delta = score - prevScore

230 prevScore = score

231 prevCadence = cadence

232
233 print "Ascent complete. Score is", score

234
235 # renormalize to account for "key"

236 for i in range(NOTES_PER_CHORD):

237 delta = (prevCadence[i] - data [-1][i] + root) % 12

238 if delta >= 6:

239 delta -= 12

240 cadence[i] = data [-1][i] + delta

241
242 output = data + [cadence [: NOTES_PER_CHORD]]

15

243
244 # display chord progression with cadence

245 if show:

246 chords = makeChords(output)

247 chords.show()

248
249 return output

250
251 # chord progression test cases

252
253 test_beeth = [[52 ,59 ,74 ,80] ,[52 ,64 ,71 ,80] ,[57 ,64 ,73 ,81] ,[52 ,64 ,71 ,80] ,

254 [57 ,64 ,73 ,81] ,[57 ,57 ,69 ,81] ,[53 ,65 ,69 ,81]]

255 test_schon = [[60 ,68 ,71 ,79] ,[61 ,67 ,70 ,77] ,[61 ,67 ,70 ,81] ,[62 ,66 ,69 ,75]]

256 test_luto1 = [[68 ,72 ,72 ,75] ,[68 ,72 ,72 ,75] ,[67 ,71 ,74 ,77] ,[65 ,69 ,75 ,78] ,

257 [66 ,70 ,73 ,76] ,[68 ,72 ,72 ,75]]

258 test_luto2 = [[63 ,68 ,72 ,75] ,[70 ,63 ,79 ,82] ,[63 ,68 ,72 ,75] ,[68 ,70 ,77 ,80] ,

259 [66 ,71 ,75 ,78]]

260 test_luto3 = [[69 ,74 ,74 ,77] ,[69 ,74 ,74 ,77] ,[68 ,73 ,76 ,79] ,[62 ,67 ,77 ,80] ,

261 [63 ,68 ,72 ,75] ,[65 ,70 ,70 ,73] ,[66 ,71 ,75 ,78]]

262 test_luto4 = [[67 ,72 ,72 ,75] ,[67 ,72 ,72 ,75] ,[66 ,71 ,74 ,77] ,[60 ,65 ,75 ,78] ,

263 [61 ,66 ,70 ,73] ,[63 ,68 ,68 ,71] ,[64 ,69 ,73 ,76]]

264 test_mess1 = [[57 ,59 ,63 ,68] ,[57 ,59 ,63 ,65] ,[57 ,59 ,63 ,68] ,[59 ,63 ,68 ,69] ,

265 [60 ,65 ,69 ,71] ,[59 ,64 ,68 ,71]]

266 test_mess2 = [[50 ,56 ,58 ,61] ,[51 ,57 ,59 ,62] ,[52 ,58 ,61 ,63] ,[53 ,59 ,62 ,64] ,

267 [55 ,61 ,63 ,65] ,[54 ,60 ,62 ,69]]

268 test_liget = [[71 ,72 ,74 ,75] ,[73 ,74 ,75 ,76] ,[74 ,75 ,76 ,77] ,[75 ,76 ,76 ,77] ,

269 [76 ,75 ,76 ,77] ,[76 ,77 ,76 ,77]]

16

