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Abstract 

Over 2016 and 2017, the MIT Music Technology Lab created ConcertCue (formally 

known as NoteStream), a web platform for streaming rich-content program notes to audience 

cellphones in synchronization with a live musical performance. ConcertCue aims to make the 

concert experience more informative, enriching, and appealing for novice and experienced 

listeners alike. At this time, synchronization of the content to the live performance is done 

manually by a human operator who advances time in the application by tapping along to the 

beat of the music. This requires additional training, preparation, and can be prone to error. 

Methods such as dynamic time warping which have traditionally been used for automatically 

time-aligning two unique recordings of the same piece do not work in real-time because of their 

time complexity and requirement of complete data. The goal of this project is to implement and 

build upon existing algorithms in order to create an algorithm that can provide accurate 

positional estimates of a live musical piece given an input audio stream and a pre-supplied 

reference recording of the performance. To accomplish this, a variation of dynamic time warping 

called “online time warping” was implemented and further developed. The resulting algorithm 

performed decently well with test content, reaching an average accuracy of 87%. Though these 

results are promising, further improvement would be necessary to completely automate the 

synchronization process and remove the need for a human operator. 

Motivation 

In December 2016, the MIT Music Technology Lab debuted NoteStream at the MIT Wind 

Ensemble Prism II concert. The NoteStream web app provided rich content notes that were 

synchronized to the music, providing audience members with a live listening guide and 
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informational facts about the piece’s composition and background as it played. NoteStream was 

again used in March 2017 for Evan Ziporyn’s ‘Ambient Orchestra’, where it was used with David 

Bowie’s Blackstar arranged for orchestra. In both instances, the app was greeted with largely 

positive feedback. 

The content was synchronized to the live performance through a human operator who 

kept the system synchronized by tapping along to the beat of the live performance. Custom 

software made use of pre-annotated audio recordings that had a time annotation for each beat. 

This software sent time position updates to a centralized time server that then updated the 

subscribed web clients.  

Removing the need of a human operator to synchronize the app to the pieces could 

allow for more accurate tracking, less setup work, and no necessary training, allowing 

ConcertCue to be used in more venues. With further improvements, the algorithm could be used 

directly on phones, allowing individuals to have a live listening guide independent of a specific 

performance of the given piece, allowing ConcertCue to be used at home or independently of a 

specific concert.  

Prior Work 

ConcertCue was inspired by LiveNote​[1]​, a similar platform created by the Drexel MET 

Lab for the Philadelphia Orchestra. Like ConcertCue, LiveNote provides real time information 

and images about the piece being played by the orchestra. Unlike ConcertCue, LiveNote is a 

native iOS application that requires connection to a specialized network. On this network a 

specialized listening machine records the live performance, calculates the current song position 

in real time, and distributes the position to the clients. The work that went into LiveNote is 
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summarized in their paper​[2]​, which discusses the techniques used to achieve live time 

alignment. This paper and its references were used as a guide for implementing our own time 

alignment algorithm. It should be noted that LiveNote is now using a human operator for 

synchronization, as is presently done in ConcertCue.  

Background 

Audio is a one dimensional signal- digital audio is a discrete time signal where each 

sample corresponds to the recorded audio level at that sample’s moment in time. Two distinct 

recordings of the same piece will have completely unique audio signal representations that 

cannot be usefully compared directly. Despite this, a human can recognize and correlate 

different points in the two recordings. With the proper techniques, computers can as well. 

Variations in instrumentation, recording techniques, and performance will result in 

differences of tempo and timbre between two recordings of the same piece. However the two 

recordings will share the same overall pitch data. By using the short-term fourier transform 

(STFT), the one dimensional audio signal can be converted to a two dimensional frequency / 

magnitude signal. This signal can be binned according to classical western pitch structure (12 

distinct pitch classes spread over many octaves) becoming a 12 pitch-class / magnitude signal. 

Each column of this signal is then normalized such that the sum of the rows is 1, completing the 

process and making it a chromagram​[2]​.  

These chromagrams can be used directly as the feature vectors for synchronization 

using dynamic time warping (DTW)​[3]​. The first step in DTW is to calculate a cost matrix that 

represents the local “cost” of moving from an adjacent cell to that target cell. The cost matrix is 

calculated using the two chromagrams by taking the outer product of the chromagrams and 

subtracting each value from one. This results in a rectangular cost matrix that has higher values 
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where the chromagrams are less similar, and lower values where they are more similar. The 

accumulated cost matrix, which is the same size of the cost matrix, is then calculated; each 

element is calculated starting at the beginning of the piece (lower left corner of the matrix) and 

working through to the end of the piece (upper right corner of the matrix). Dynamic time warping 

then uses this accumulated cost matrix to backtrack and find the optimal path of least cost, 

which corresponds to the time mapping between the two recordings.​[3]  

Because the distance is calculated for each location on the NxM accumulated cost 

matrix, this process takes O(N*M) time, which is too slow for real-time application and also 

requires knowing the full signals in advance. While there exist techniques for applying global 

path constraints in the accumulated cost matrix (where the distance cost is not calculated for the 

entire NxM grid, but rather a small subset around the diagonal) such as Sakoe-Chiba bound​[4] 

these techniques still require knowing the full signal ahead of time in order to know what the 

slope of this diagonal is. 

The Approach 

Because data is coming in real time, we needed a way of finding the least cost path in 

the forward direction. This is achieved using Dixon’s “On-Line Time Warping” algorithm​[3]​ as 

inspiration. Online time warping does not use global path constraints, calculates the minimum 

cost path in the forward direction, and is computationally linear instead of quadratic.​[3]​ To begin, 

the data is processed as it would be for dynamic time warping. The short term fourier transform 

is used to convert the reference audio signal to the frequency domain, and then converted to a 

chromagram representation. The incoming audio is windowed and has the STFT and 

chromagram process (with optional exponential smoothing) applied to each incoming window in 
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real time. The cost matrix is calculated like in DTW, by taking the outer product of the new 

incoming chromagram column with the existing reference chromagram and subtracting it from 

one. 

The algorithm maintains an x-y cursor into the cost and accumulated cost matrices that 

corresponds to the most recent location in its estimate of the optimal path. The cursor is also 

used as the start point for calculating partial rows or columns (where the partial size 

corresponds to the algorithm’s window size, c) in the accumulated cost matrix. The previous 

positions of this cursor are saved as the optimal path. 

As new columns of the cost matrix are calculated, the algorithm calculates partial rows or 

columns of the accumulated cost matrix using the standard DTW recursion cost formula.  

min(D , D , D )Dx, y =  x−1, y−1  x−1, y  x, y−1  

Where D is the accumulated cost matrix, and (x, y) is the current location. 

The algorithm begins by moving the cursor along the diagonal until it has calculated ​c​2 

elements at the beginning. Beyond this initial search area, the algorithm makes use of the 

minimum path cost (in the accumulated cost matrix). If the minimum path cost occurs at the 

position of the cursor, the row (y) and column (x) of the cursor are incremented. If the minimum 

path cost occurs in the current row, but not at the cursor, the row (y) of the cursor is 

incremented. If the minimum path cost occurs in in the current column but not at the cursor, the 

column (x) of the cursor is incremented. 

Experimental Setup 

In order to write, test, and debug the algorithm, a test framework, test data, and the 

algorithm itself had to be created. This section details the architectural design of the system and 
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its components. The development and test machine was a 2016 MacBook Pro with 2.7 Ghz 

Intel i7 processor running macOS 10.12.4 and Python 2.7.13. 

Test Data 

In order to test the algorithm, a number of orchestrated pieces were collected to test the 

system. Three versions of each movement were collected; each produced by a different 

orchestra under differing recording situations and performance speeds. Additionally, two pop 

songs were included to test the algorithm under the different sonic circumstances that they 

provide. The selection of pieces is detailed in the following table: 

Composer Piece Movements 

J.S. Bach Suite No. 3 in D Major II. Air 

J. Brahms Symphony No. 3 in F Major I. Allegro 

D. Shostakovich Symphony No. 5 in D Minor I. Moderato 

A. Vivaldi Concerto No. 4 in F Minor (“Winter”) I. Allegro non molto 
II. Largo (Eb Major) 
III. Allegro 

Pink Floyd Nobody Home  

Joy Division Love Will Tear Us Apart  

 

File preparation for each recording included removal of extraneous sound at the 

beginning and ending of tracks, as well as conversion to wav format with a sampling rate of 

22050 Hz. This sampling rate was chosen in order to preserve sound quality while reducing 

processing time by two. 
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Creating Truth 

A ground-truth mapping of the individual recordings was created in order to measure the 

error of the algorithm’s estimates. To create this truth map, an open source software tool, Sonic 

Visualizer, was used to create instant files.  

Instant files refer to simple csv (comma separated value) files that contain a line for each 

beat in the piece. Each line has the time, or instant, in seconds that the beat occurs on and a 

label (typically the beat number). These files will be of equal length for two recordings of a given 

piece since they should have the same number of beats. If they were not, due to a repeat or 

lack thereof, the audio files were edited to include the repeat by simply repeating the 

unrepeated audio. 

At run time, one recording is the input while another is the reference. The instant files of 

the input and reference are mapped together by their beats, such that if beat 1 in the input is at 

1.2 seconds, and beat 1 of the reference is at 2.0 seconds, an input time of 1.2 seconds 

corresponds to a reference time of 2.0 seconds. Values between individual beats are calculated 

using linear interpolation, allowing calculation the corresponding reference time for any input 

time and vice versa.  

Test Framework 

The purpose of the test framework is to load the reference and input data, provide the 

algorithm with reference data and a simulated input audio stream, measure the performance of 

the algorithm, and provide visual and text results of the algorithm’s performance. The test 

framework can be run on individual reference-input pairs or can be run as a test suite where all 

test data is fed sequentially through the algorithm. This framework uses JSON files for test 
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configuration, which includes the list of available pieces to run in the suite and algorithm 

settings. This allows variations of the same algorithm to be tested and compared.  

Reference Data 

Reference data refers to the audio data and its instants file used as the algorithm’s 

reference; it is a pre-existing recording of the piece that the algorithm has full access to. The 

instants file is a map of all the beats and their positions in seconds and is used by the test 

framework- see the “Test Data” section below for more details. 

Input Data 

The input data refers to the audio data that is fed to the algorithm in real-time and its 

instants file; the audio is fed to the algorithm as though it were a live input signal during the 

musical performance, making it a causal system. See the “Test Data” section below for more 

details. 

Testing the Algorithm 

To test the algorithm, the test framework first loads and converts the input and reference 

audio and instants files. The audio data is converted to mono and resampled to 22050 samples 

/ second if it is not already. Next the algorithm under test is initialized with the reference audio 

data and a callback function for time estimate updates.  

The test begins when the input data is fed to the algorithm. To do this, the algorithm 

iterates through the input data in buffer sized increments, where the simulated buffer size 

corresponds to the buffer size likely found in the input an actual sound card- in this case 512 

samples. Buffer size determines the amount of latency that the system will experience and can 
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be calculated by dividing the buffer size by the sample rate. In this case, 512/22050 = 23 ms, 

which is negligible. At each iteration, the framework calculates the actual time using the 

InputMap class which is discussed in the “Test Data” section. This process repeats until the end 

of the input data is reached. 

Scoring 

Each time the algorithm calculates an estimated position it provides this estimate 

through the callback function provided by the test framework. This callback is the score function 

which uses the error of the estimate to the known actual time as the input of a gaussian 

function. The score function is as follows: 

t t  ε =  actual −  estimate  
 1, b 0, c 3  a =   =   =   

core a e  S =  * e(ε−b) /(2 c )2
* 2 =  (ε /18)2  

The score is then appended to an array for later use. A standard deviation of 3 seconds was 

chosen in order to have scoring that would be fairly strict while still allowing for reasonable 

variation without excessive penalty. 

Upon the input’s completion, the mean and standard deviation of the scores are 

computed in order measure the algorithm’s performance on that reference-input pair. Graphs of 

the reference chromagram, short-term fourier transform, the calculated cost and distance 

matrices with overlaid path, and time error vs time are also created to debug and judge the 

algorithm’s performance. 
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The Algorithm 

At initialization, the algorithm creates the STFT and chromagram of the reference audio 

of length N. The chromagram is then optionally filtered temporally to reduce the effects of noise 

and sporadic frequency content. In order to avoid costly array expansions, empty arrays and 

matrices are made for the input STFT, chromagram, and resulting cost and distance matrices. 

These empty arrays are twice the size (2N) of the reference arrays in order to not grow the 

arrays during runtime (which was found to be too computationally expensive). Additionally, 

smaller buffers are created for the incoming audio. The algorithm then waits to receive samples. 

Upon receiving samples, it appends the data to an input buffer. Once this buffer is the 

size of the STFT window or hopsize, whichever is larger, the algorithm creates a single STFT 

column and its chromagram. This input chromagram column is normalized, optionally filtered, 

and the outer product of the column with the reference chroma subtracted from 1 is calculated 

to determine the next cost matrix column. The algorithm is then run on this cost matrix, 

populating the accumulated cost matrix and calculating the path at the same time. The algorithm 

updates the container app with its estimate each time it has calculated a predetermined number 

of updates.  

Filtering of the chromagram was made optional in order to compare the results with and 

without filtering. Filtering was performed using exponential smoothing. A simple moving average 

filter was attempted with window sizes of 2 and 4, but its performance was not found to be as 

good. In our configuration, the filter function was constructed with a smoothing function of ½, 

such that: 

[n] (x[n] y[n ])  y =  2
1 +  − 1  
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Audio is processed at a sample rate of 22050, which is half “CD quality”. For the STFTs, 

a hop size of 2048 and windows size of 4096 was chosen as it provided a good balance of 

performance and processing speed. Chromagrams were both unfiltered and average filtered, 

corresponding to two variations of the algorithm. The algorithm features a max run parameter to 

ensure that the algorithm does not step in a given direction for too long. This is currently set to 3 

steps, which corresponds to a slope of 3 or ⅓ on the cost matrix. Given that it is unlikely for an 

orchestra to play a piece 3 times faster or slower than any particular reference recording, it was 

chosen to allow the algorithm catch-up and slow-down time. The algorithm’s search width, ​c​, 

was set to 100, corresponding to about 10 seconds of audio.  
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Performance 

To gauge the performance of the algorithms, the test suite was run on each piece and 

each combination of recordings. With five pieces and three recordings each, this resulted in 45 

trials when recordings were tested against themselves, and 30 when self tests were excluded. 

The overall average score is shown in the below table, including with self test (where the 

reference and input were equal) and without.  

Algorithm With Self Tests Without Self Tests 

Online Time Warping (No 
Filter) 

88.6% w/ std dev. 15.7% 83.6% std dev. 20.6% 

Online Time Warping 
(Chromagram Filter) 

91.2% w/ std dev. 13.2% 87.5% std dev. 17.0% 

Full Data 

The left columns correspond to Online Time Warping with no filtering, while the right columns 

correspond to Online Time Warping with chromagram filtering.  
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Vivaldi - Four Seasons (Winter) - Movement 1 
  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

0 0 00:06.7 99.5% 3.1% 3.04  00:07.2 99.4% 3.1% 3.04 

0 1 00:07.1 88.8% 22.2% -7.82  00:07.3 95.7% 10.5% -3.84 

0 2 00:06.9 88.5% 22.0% -6.57  00:07.3 92.1% 18.9% -5.41 

1 0 00:07.5 87.9% 21.6% 7.88  00:06.8 95.2% 8.8% 3.58 

1 1 00:07.4 99.8% 0.6% 1.29  00:06.9 99.7% 0.5% 1.20 

1 2 00:07.2 91.7% 14.3% 4.16  00:07.0 97.8% 4.2% -2.15 

2 0 00:07.3 88.7% 20.5% 6.13  00:07.0 92.5% 16.8% 5.17 

2 1 00:07.8 92.5% 14.6% -4.37  00:07.1 98.9% 2.2% 1.59 

2 2 00:07.0 99.5% 3.1% 3.05  00:07.2 99.4% 3.1% 3.04 

 
Vivaldi - Four Seasons (Winter) - Movement 2 

  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

0 0 00:04.2 95.5% 17.9% 8.83  00:04.3 95.5% 17.9% 8.83 

0 1 00:04.6 90.7% 17.1% 6.04  00:04.9 94.1% 8.0% 4.28 

0 2 00:04.4 96.0% 7.6% -3.25  00:04.4 97.8% 5.2% 3.16 

1 0 00:04.3 86.4% 15.5% -4.56  00:04.7 88.0% 10.3% 3.06 

1 1 00:04.8 99.5% 2.9% 2.69  00:05.0 99.4% 2.9% 2.69 

1 2 00:04.7 81.6% 25.0% -7.62  00:04.6 92.0% 13.4% -3.74 

2 0 00:04.5 92.6% 12.5% 3.86  00:04.3 93.5% 10.4% 3.38 

2 1 00:04.8 84.9% 23.9% 9.60  00:05.1 94.5% 9.8% 3.14 

2 2 00:04.4 99.4% 3.1% 2.73  00:04.6 99.4% 2.9% 2.64 
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Vivaldi - Four Seasons (Winter) - Movement 3 
  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

0 0 00:06.2 99.7% 1.5% -2.04  00:07.2 99.6% 1.5% -2.04 

0 1 00:06.7 57.8% 43.6% 33.85  00:07.5 67.6% 39.6% 23.30 

0 2 00:06.5 87.6% 23.5% 9.34  00:07.1 90.6% 20.9% 8.23 

1 0 00:06.2 57.4% 43.7% -38.04  00:06.8 66.4% 39.4% -29.33 

1 1 00:06.7 99.8% 0.1% -0.37  00:07.0 99.7% 0.1% -0.28 

1 2 00:06.5 81.2% 26.2% 6.71  00:06.6 82.1% 23.9% -6.00 

2 0 00:06.3 87.1% 23.4% -11.45  00:06.2 88.7% 21.3% -10.21 

2 1 00:06.7 83.5% 23.0% -7.30  00:07.6 84.9% 21.5% -6.00 

2 2 00:06.5 99.2% 5.2% 4.03  00:06.4 99.1% 5.1% 4.03 

 
Shostakovich - Symphony No. 5 - Movement 4 

  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

0 0 00:23.2 99.8% 0.1% 0.59  00:25.1 99.8% 0.1% 0.59 

0 1 00:25.5 89.3% 22.9% 10.34  00:26.3 87.4% 25.9% 10.15 

0 2 00:28.5 74.1% 34.1% 13.62  00:25.5 58.3% 44.7% 43.45 

1 0 00:25.7 89.9% 22.5% -16.33  00:23.6 88.2% 25.2% -16.20 

1 1 00:26.9 97.0% 15.8% 21.31  00:26.2 97.0% 15.8% 21.22 

1 2 00:27.3 85.7% 24.2% 7.70  00:29.0 83.8% 27.7% 13.23 

2 0 00:25.6 75.9% 35.7% -25.69  00:25.7 69.1% 41.9% -74.73 

2 1 00:27.6 83.7% 27.1% -12.69  00:26.1 82.6% 29.3% -15.37 

2 2 00:27.3 99.8% 0.1% 0.75  00:27.4 99.7% 0.1% 0.75 
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Bach - Orchestral Suite No. 3 - Movement 2 
  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

0 0 00:09.8 95.4% 19.5% 16.40  00:10.3 95.4% 19.5% 16.30 

0 1 00:10.4 88.1% 20.4% 15.65  00:11.2 90.0% 19.0% 15.56 

0 2 00:11.1 96.6% 4.6% 2.21  00:12.2 95.1% 7.7% 3.11 

1 0 00:11.0 84.2% 22.8% 19.57  00:10.8 84.9% 21.8% 19.57 

1 1 00:11.1 94.7% 21.1% 19.47  00:11.4 94.7% 21.1% 19.38 

1 2 00:11.5 34.3% 39.3% 54.46  00:12.3 76.1% 28.6% 7.60 

2 0 00:10.4 92.5% 9.0% -3.46  00:11.3 89.2% 13.3% -4.31 

2 1 00:10.9 31.4% 38.3% -47.97  00:11.2 74.0% 32.2% -9.56 

2 2 00:11.6 99.8% 0.0% -0.28  00:12.2 99.8% 0.1% -0.28 

 
Brahms - Symphony No. 3 in F Major - Movement 1 

  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

0 0 00:33.3 99.7% 1.1% -2.41  00:35.7 99.7% 1.1% -2.41 

0 1 00:37.6 84.2% 22.3% 7.17  00:39.9 83.8% 21.7% 7.72 

0 2 00:33.2 96.6% 6.9% 3.56  00:34.4 97.2% 4.7% -2.56 

1 0 00:35.0 76.6% 27.9% -9.03  00:35.4 75.6% 27.6% -9.21 

1 1 00:38.8 99.8% 0.0% 0.44  00:39.3 99.8% 0.1% 0.44 

1 2 00:34.3 83.9% 19.6% -7.17  00:34.7 78.7% 23.7% -8.40 

2 0 00:35.4 96.2% 8.0% -4.92  00:33.5 97.0% 5.8% -3.34 

2 1 00:38.2 90.6% 13.2% 5.06  00:37.8 87.1% 17.3% 6.24 

2 2 00:34.1 99.7% 1.7% -3.24  00:32.6 99.7% 1.7% -3.24 
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Pink Floyd - Nobody Home 
  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

Original Original 00:06.1 99.7% 1.2% 1.83  00:06.5 99.6% 1.1% 1.74 

Original Metric Cover 00:06.5 85.4% 19.7% 5.88  00:06.7 89.5% 12.2% -4.19 

Original BritFloyd Cover 00:06.3 91.8% 12.4% 4.08  00:06.3 96.7% 6.8% 2.71 

Metric Cover Original 00:06.1 84.8% 20.2% -5.97  00:06.1 89.5% 13.7% 3.86 

Metric Cover Metric Cover 00:06.3 95.0% 19.9% 12.53  00:06.4 95.0% 19.8% 12.44 

Metric Cover BritFloyd Cover 00:06.1 93.6% 10.7% -3.66  00:06.1 94.5% 9.2% -3.29 

BritFloyd 
Cover 

Original 00:06.1 89.6% 13.7% -4.47  00:06.0 96.0% 8.2% -3.27 

BritFloyd 
Cover 

Metric Cover 00:06.2 91.1% 11.1% 4.02  00:06.2 94.3% 7.9% 2.77 

BritFloyd 
Cover 

BritFloyd Cover 00:06.0 99.8% 0.5% 1.22  00:06.6 99.7% 0.6% 1.22 

 
Joy Division - Love Will Tear Us Apart 

  No Filter     Filter    

Reference Input Runtime Score Std. 
Dev 

Worst 
Error 

 Runtime Score Std. 
Dev. 

Worst 
Error 

Original Original 00:06.7 99.8% 0.2% -0.82  00:07.3 99.8% 0.3% -0.82 

Original The Cure 
Cover 

00:07.7 88.8% 17.5% -6.30  00:08.1 94.6% 4.5% 2.05 

Original David Gahan 
Cover 

00:07.2 86.6% 12.3% -4.10  00:07.2 92.5% 5.6% -2.29 

The Cure 
Cover 

Original 00:07.3 85.7% 19.7% 6.48  00:07.0 89.1% 7.9% -2.66 

The Cure 
Cover 

The Cure 
Cover 

00:08.6 98.3% 10.2% 6.60  00:07.5 98.2% 10.0% 6.60 

The Cure 
Cover 

David Gahan 
Cover 

00:07.3 67.7% 23.2% 7.16  00:06.5 73.7% 16.2% 6.42 

David Gahan 
Cover 

Original 00:06.9 90.7% 9.5% 3.52  00:06.8 96.5% 3.3% 1.78 

David Gahan 
Cover 

The Cure 
Cover 

00:07.3 76.0% 20.9% 7.60  00:08.5 82.2% 15.9% 7.97 

David Gahan 
Cover 

David Gahan 
Cover 

00:06.7 97.5% 13.2% 7.97  00:07.3 97.5% 13.1% 7.97 
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Discussion 

The “Worst Error” metric doesn’t paint a particularly useful picture, as a lot of the times 

this value grew very large at the end of pieces. The following error plot demonstrates this issue 

in the case of Bach 1 vs 0. Here the algorithm performs very well up until the very end, where 

the error grows very fast.. 

 

Upon closer inspection these types of errors seem to occur is silence at the end of the 

piece. Solving this problem with the current algorithm would require adding a lot more 

intelligence to it (such as not continuing unless the signal is greater than a given noise floor). 

Gating techniques may be tricky given the huge dynamic range of a typical orchestra. Likely the 

easiest solution is to start and stop the algorithm as close as possible to the beginning and end 

of the piece. 

The algorithm tended to suffer at times when the chromagram remained static- (that is 

the same pitch content repeated for some amount of time). At these times the algorithm's 

estimation was significantly faster or slower than the reference time. Despite this, that algorithm 

demonstrated fairly good recovery. This is particularly observable in the third movement of 

Vivaldi’s Winter, with recording 1 vs 0. The below graphs, starting from top show the filtered 

chromagram of recording 1, the filtered chromagram of recording 0, the error of 1 vs 0, and the 

cost matrix cropped to the first minute of the piece. The error builds up when there is little 
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change in the chromagram because the cost matrix for these areas tend to have very poorly 

defined features- one would expect to see a diagonal of low cost, but instead there are 

horizontal and vertical bands. As soon as the chromagram begins to change, the cost matrix 

begins to have a more distinct diagonal and the the algorithm begins to catch up. 
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Filtering the chromagram provided anywhere from a slight improvement (1%) to 

significant improvement (30% with the Bach 1 vs 2) to the overall scores while very minimally 

impacting performance (generally adding only a second to runtime). Chromagram filtering was 

most beneficial when the source audio was noisy. Noise contributes energy to the entire 

frequency spectrum, making the chromagram less distinct. This can be seen in the below three 

chromagrams of Bach’s Movement 2 of Orchestral Suite No. 3. The topmost filtered 

chromagram is a clean recording of the piece, the middle unfiltered chromagram and bottom 

filtered chromagrams are from a noisy recording of the same piece.

 

 

 

The filtered version of the noisy chromagram performed much better, providing a 30% increase 

to the overall score. Better filtering of noise would likely return even better results and should be 

pursued in later implementations of this algorithm. 
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The average runtime of both algorithms was significantly faster than real-time, 

processing with an average rate of 26.5 input seconds / real second for both algorithms. This 

provides ample room for more complex processing of the signal. 

Future Work 

With a large portion of the work having already gone into the test framework and test 

data, next steps can focus more on implementing and testing a variety of algorithms. Given that 

the field of music technology is currently active and always finding improvements, there may 

exist better algorithms already and in the near future. 

The algorithm should be tested under a wider variety of more real world conditions. This 

may include simulating noise, audience, delays in start, nonlinear effects, and other similar 

factors. It should also be tested with an actual microphone and playback system in order to 

determine the effects of signal distortion. 

Conclusion 

Though online time warping worked decently, it is still too early to have the system 

completely rely on an automated process. With better signal processing and more intelligent 

algorithms, the goal of automating ConcertCue may become more realistic. With some 

modification, the algorithm could potentially be used in conjunction with a human operator who 

could override it if performance becomes too poor. This defeats the goal, but would provide 

useful real world data for algorithm weaknesses.  
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